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Abstract

Revenue Management in Online Advertising

Sami Najafi Asadolahi

2011

Online advertising is a multibillion-dollar business with a promising revenue increase

for the coming years. Web publishers that generate revenues from online advertising

face several challenging decisions. They need to decide on how many advertising slots

to have on their website, whether to hire a sales force to attract advertisers to post ads

on their website or rely on advertising networks, how many impressions to promise

to deliver, and how much to charge, etc. Revenue management, in particular pricing,

is considered one of the most challenging tasks and currently ad-hoc approaches are

frequently used. In this dissertation, we provide systematic approaches for managing

revenues in online display advertising.

In the first chapter, we consider a web publisher facing uncertain demand from

advertisers requesting space on its website, and an uncertain supply of impressions

from viewers visiting the website. Formulating the problem as a novel queuing sys-

tem we show, for example, that the optimal cost-per-impression (CPM) can increase

in the number of ads rotated in a slot, which goes against the intuition of supply and

demand. In the second chapter, we consider a different pricing scheme, the so-called

cost-per-click scheme. Formulating the problem as another novel queuing system,

we show that the general heuristic applied by practitioners to convert between the

CPC and CPM pricing schemes using the so-called click-through rate (CTR), can be

misleading. In the third chapter, we explore the interactions of two web publishers

in a competitive setting and provide various interesting insights about their strategic



pricing behavior at equilibrium. Lastly, In the fourth chapter, we obtain the opti-

mality conditions for the advertisers’ demand process when the demand distribution,

instead of being Poisson, follows an arbitrary continuous distribution.
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Introduction

The research conducted in this dissertation lies in the interface of operations, market-

ing, information technology, and economics. Much of this work focuses on providing

new tools for understanding and resolving complex operational challenges faced by

web publishers in online advertising, using a variety of management science tech-

niques such as stochastic models, game theory, and optimization methods. These

sophisticated operational tools assist web publishers in pricing and the revenue man-

agement of display ads while operating in risky and uncertain environments. The

models discussed in this Ph.D. dissertation reflect, as extensively as possible, the

reality of online display advertising by considering some of the most important as-

pects of a web publisher’s advertising operations. The research in this thesis is one

of the very first steps to bridge the gap between much of the academic literature on

pricing in online advertising, which mainly focuses on deterministic models and the

much more complex online advertising settings encountered in practice. The models

developed and discussed in this Ph.D. dissertation provide significant contributions

to the currently developing management science literature on online advertising, and

help to distance from the commonly made assumptions of deterministic systems in

the marketing literature. Beyond all, some of the introduced models in various sec-

tions of this thesis (particularly, those introduced in Chapters 1 and 2) can serve as

decision making tools for web publishers running advertising operations, for instance,
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by providing extra layers of intelligence on top of their pricing engine software.

Any web publisher that generates revenues from display advertising faces several

challenging decisions. They need to decide how many advertising slots to have on its

website, whether to hire a sales force to attract advertisers to post ads on its website

or rely on advertising networks, how many impressions to promise to deliver, and

how much to charge, etc. Revenue management, in particular pricing, is considered

to be one of the most challenging decisions that publishers face and currently ad-hoc

approaches are frequently used. In this Ph.D. dissertation, we provide systematic

approaches to bridge this pricing gap. The chapters that constitute the remainder

of this dissertation deal with four different aspects of this problem, all of which are

of significant importance to the online advertising industry.

In Chapter 1, we consider a web publisher that generates revenues from displaying

advertisements on its website and charges according to a cost-per-impression (CPM)

pricing scheme. The advertisers request their ad to be displayed to a certain number

of visitors to the website. We focus on the main operational challenge of matching

uncertain demand from advertisers requesting advertising space, to uncertain supply

from viewers. The publisher faces challenging decisions of determining the price per

impression, number of advertising slots, number of advertisements that share each

advertising slot and others. Our stylized model is a new queuing system with no

waiting space (loss system), where advertising slots correspond to servers. What

sets this novel system apart from known multi-server queuing systems is its service

mechanism; the advertising slots act as synchronized servers. We derive a closed-form

solution for the system’s steady-state probabilities and determine the optimal price.

Using this solution, we analyze the publisher’s optimal decisions and for example

show that the optimal price increases in the number of impressions made of each ad,

xii



which goes against the quantity-discount commonly offered in practice. In addition,

we conduct an empirical analysis of advertisers’ and viewer’s arrival processes at a

large Scandinavian web publisher and link its implications to our model’s assump-

tions. Finally, using extensive simulations for more general operational settings, we

demonstrate that the proposed results are promising.

In Chapter 2, we consider a different pricing scheme, the so-called cost-per-click

(CPC). We formulate this problem using a different queuing system, where the slots

correspond to serving channels. The resulting queuing system is quite complex and

different from the system considered in Chapter 1, owing to its multidimensional

state space and the fact that the service rate of each server has an inverse relation to

the number of active servers. We derive the closed-form solution for the steady-state

probabilities of the number of advertisers in this system. Using this solution, we show

that the behavior of the two pricing schemes at the optimal level can be considerably

different. As described in Chapter 1, for instance, the optimal cost-per-impression

(CPM) prices decrease in the number of advertising slots, while in Chapter 2, we

show that the optimal CPC prices may increase with the number of slots. A more

important result which we show in this chapter is that the common tendency among

practitioners to convert the prices between the two schemes using the click-through

rate (CTR) can be misleading.

In Chapter 3, we explore the interactions of two web publishers in a competitive

setting and provide various interesting insights about their strategic behavior at

equilibrium. We focus on the steady-state equilibriums (SSE), which tends to be

significantly more reliable in the players’ behavior predictions than the equilibriums

obtained merely in a one-stage game. The reason for this is that by considering

SSE, we study the strategic behavior of the publishers in the limit when the game
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is played many times. As a result, the players learn from the past and become

more sophisticated decision makers. One of the insights that we demonstrate is that

in the competition setting more web traffic (visitors) may not mean more revenue

for a publisher, as a substantial traffic increase for one of the publishers may lead

all publishers to lose profits as a result of the consequent price wars. In addition,

we consider the zero-sum repeated competition of incomplete information on one

side between the two web publishers. We find that the publisher having private

information about the market can always guarantee reaching a higher payoff by

adopting a proper partially revealing strategy.

Lastly, in Chapter 4, we obtain the optimality conditions for the advertisers’ de-

mand process when the demand follows an arbitrary continuous distribution rather

than being Poisson. The results in this chapter go beyond online advertising as they

are related to any setting based on customers’ demand distributions. More specifi-

cally, in this chapter, we consider the optimality condition introduced by Gallego and

van Ryzin (1994) for Poisson customers’ demands with finite time horizon as well

as the optimality condition introduced by Araman and Caldenty (2009) for Poisson

demands with stopping (or infinite) time horizon. We extend these two demand

optimality conditions from Poisson to an arbitrary continuous demand distribution.

xiv



Chapter 1

Revenue Management for a Web

Publisher Using Advertising

Networks

1.1 Introduction

The Internet has been a fast growing advertising medium. It provides access to a

large consumer base and companies are constantly increasing the portion of their

marketing budget allocated to online advertising (IAB 2010). Online advertising is

a $23 billion business (IAB 2010). It can be divided into two domains: sponsored

search advertising, involving advertisers paying a fee to appear next to search results

for particular search words (e.g., Google) and display advertising where publishers

display banner ads on their website (e.g., CNN.com). Sponsored search advertising

involves well established payment procedures based on auctions, while pricing display

ads lacks systematic approaches. In this chapter, we focus on display advertising.
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Web publishers that generate revenues from display advertising face several chal-

lenging decisions. They need to decide on how many advertising slots to have on

their website, whether to hire a sales force to attract advertisers to post ads on their

website or rely on advertising networks, how many impressions to promise to de-

liver, and how much to charge, etc. Revenue management, in particular pricing, is

considered to be one of the most challenging tasks and currently ad-hoc approaches

are frequently used. In this chapter, we provide systematic approaches for managing

revenues in online display advertising.

When modeling the advertising operation of a web publisher we focus on the

main operational challenge of matching uncertain demand from advertisers request-

ing advertising space to uncertain supply from viewers visiting the website (often

referred to as impressions). We consider a common setting for small and medium

publishers where the publishers do not have their own sales force but use advertis-

ing networks to provide them with advertisers (see the Appendix for more details

on ad networks). The advertisers are charged based on the “cost-per-impression”

(CPM) pricing scheme. This setting captures around 25% of the $23 billion online

advertising market (IAB 2010, Business Week 2009, and Media Banker 2009).

We consider the demand faced by the web publisher as “arrivals” of advertisers

and the supply as “arrivals” of viewers. Advertisers complete their service when

the agreed number of viewers has visited the website while the ad is displayed. A

web publisher that uses ad networks is only visible to advertisers approaching the

ad network when it has advertising slots available. Therefore, if all advertising slots

are taken the web publisher does not have advertisers queueing up for their ad to

be displayed. Similar dynamics occur with direct sale channels in the case when all

advertising slots are full and advertisers are not willing to wait for a slot to become

2



available. Our model captures both settings, but we will refer to the ad network

setting for the remainder of the thesis.

The main contributions of this chapter are:

1. We construct a modeling framework capturing the main trade-offs in the oper-

ation of a web publisher dealing with an ad network that comes from matching

supply with demand. We consider a general setting of multiple webpages, mul-

tiple types of ads (e.g. based on location and size) with different prices, and

allow ads to share an advertising slot. This model can serve as a building

block for studying more complicated operational issues of a web publisher such

as competition for which we provide some initial but promising results. (See

Sections 1.3 and 3.3.)

2. We derive a closed-form solution of the probability distribution of the number

of advertisers in the system. This enables us to determine the optimal price

for the web publisher to charge advertisers and analyze the publisher’s system

in detail. (See Sections 1.3 and 1.5.)

3. We show that the optimal price increases in the number of impressions. While

this can be explained based on operational insights, all web publishers we

approached offer either fixed prices or quantity discount, except for Yahoo! that

recently started to charge a higher price per impression for contracts delivering

a large number of impressions1. We provide further insights on how the price

is affected by web traffic, number of ad slots, number advertisers that share

a slot, and other decision factors and design parameters of the website. (See

Sections 1.5 and 1.6).

1Confirmed by Prof. Preston McAfee, VP and Research Fellow at Yahoo!
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4. We provide an analysis based on a real data set from a Scandinavian web pub-

lisher and use it to support our assumptions along with a simulation analysis.

(Section 1.7.)

The chapter is organized as follows. In the next section, the relevant literature is

reviewed. Section 1.3 presents the model developed for the web publisher’s operation.

The optimal price to charge advertisers is derived in Section 1.5. Section 1.6 provides

numerical examples for further insights and Section 1.7 presents several extensions

to the model including competition. Finally, we conclude in Section 1.8 and present

directions for future research.

1.2 Literature Review

The literature on online advertising within the marketing area is quite extensive. Ha

(2008) gives an overview of research on online advertising published in advertising

journals and Evans (2008) summarizes the economics of the online advertising indus-

try. Novak and Hoffman (2000) provide an overview of advertising pricing schemes

for the internet. However, there is limited literature on analytical models for optimal

pricing and other decision making for a web publisher with an advertising operation.

(For issues faced by advertisers such as predicting audience for advertising campaigns

see, e.g., Danaher (2007) and papers referenced therein.)

Research on online advertising within the operations research and operations

management areas is fairly limited and there are few papers on pricing in online

advertising. Mangàni (2003) compares the expected revenues from the cost-per-click

(CPC) and the CPM schemes using a simple deterministic model. Unlike our paper,

he does not consider the uncertainties involved with the advertisers’ demand and

4



viewers’ supply. Chickering and Heckerman (2003) develop a delivery system that

maximizes the click-through rate given inventory-management constraints in the form

of advertisement quotas. Both of these papers assume the prices are fixed. Najafi-

Asadolahi and Fridgeirsdottir (2010) focus on pricing for a CPC pricing scheme. The

common misconception exists in the industry that CPC prices are simply CPM prices

scaled by the click-through rate. This paper addresses that issue and shows that the

simple scaling has flaws as the actual click-through rate depends on how many ads

are on display. The paper develops a novel model for the CPC pricing scheme, which

is different from the CPM model as the CPC system has a service rate that depends

on the state of the system.

There has been some recent literature on online search and sponsored search ad-

vertising, the other section of the online advertising market. Johnson et al. (2004)

conduct an empirical study to examine the dynamics of online search behavior. Ghose

and Yang (2009) provide an empirical analysis of search engine advertising for spon-

sored searches on the internet. The nature of search advertising is fundamentally

different from display advertising, as its pricing is mainly based on using auctions.

Some researchers have focused on the problem of pricing of goods and services

on the internet. Brynjolfsson and Smith (2000) and Clemons et al. (2002) conduct

empirical evaluations of price dispersions and price differentiations on the internet.

Bakos and Brynjolfsson (1999, 2000) study the optimal strategies of product bundling

for a retailer selling products through the internet. Dewan et al. (2000) and (2003)

examine the problem of optimal product customization and price strategy both in

monopoly and in competition. Jain and Kannan (2002) and Sundararajan (2004)

analyze the optimal pricing of information goods. Although all of these papers con-

sider a variety of online pricing problems, none are applicable to the web publisher’s

5



setting.

Sometimes web publishers do not only generate revenues from advertising but

also from subscriptions. Baye and Morgan (2000) develop a simple economic model

of online advertising and subscription fees. Prasad et al. (2003) model two offerings

to viewers of a website: a lower fee with more ads and a higher fee with fewer

ads. Kumar and Sethi (2008) study the problem of dynamically determining the

subscription fee and the size of advertising space on a website. They use optimal

control theory to solve the problem and obtain the optimal subscription fee and the

optimal advertisement level over time. Unlike our paper, all these papers are focused

on capacity management problems not pricing decisions with the price assumed to

be fixed.

Scheduling the delivery of ads on a website has recently become a popular topic.

Kumar et al. (2008) develop a model that determines how ads on a website should

be scheduled in a planning horizon to maximize revenue. They consider geometry

and display frequency as the two most important factors specifying the ads. Their

problem belongs to the class of NP-hard problems and they develop a heuristic to

solve it. They also provided a good overview of other related papers on schedul-

ing. Our paper does not consider the details of scheduling individual ads rather we

approach the problem at a higher level.

In this chapter of the dissertation, we develop a novel queuing system to char-

acterize the web publisher’s system. Relatively few papers in the queuing literature

consider systems with similar characteristics. Green (1980), Brill and Green (1984),

Courcoubetis and Reiman (1987), and Hong and Ott (1989) study systems with si-

multaneous service requirements with a concept of similar nature as the synchroniza-

tion feature of the publisher’s system that is discussed in Section 1.3. Nevertheless,

6



the approaches in these papers do not prove useful when analyzing the publisher’s

system as the problem structures and the dynamics are significantly different.

We end this section by a short review of related work in revenue management.

For a comprehensive reference of traditional revenue management models, we refer

the reader to the book by Talluri and van Ryzin (2004a). However, the book does

not cover the online setting. Savin et al. (2005) consider revenue management

for rental businesses with two customer classes. Although considering a different

problem, they have assumed uncertainty in the customers’ demand in their model,

which has some similarity to our model. Araman and Popescu (2009) also study

revenue management for traditional media, specifically broadcasting. Their model is

concerned with how to allocate limited advertising space between up-front contracts

and the so-called scatter market (i.e., a spot market) in order to maximize profits and

meet contractual commitments. Unlike our paper, both of these papers are mainly

concerned with the capacity decisions.

We approach the web publisher’s operation in a similar manner as Araman and

Fridgeirsdottir (2010) with arrivals of advertisers and viewers. They focus on pricing

and capacity management for a system where advertisers are willing to wait. This

leads to intractable formulations. However, they solve a scaled version of their sys-

tem and determine asymptotic optimal solutions and show that the fluid solution

derived from a system with no uncertainties is asymptotically optimal. They pro-

vide insights on the impact of uncertainty on the pricing and capacity management.

In contrast, this chapter of the dissertation derives a closed form solution of the

web publisher’s operation with advertisers that are not willing to wait or request

advertising campaigns through advertising networks. This enables us to provide well

supported managerial insights and analyze the system in detail. The well established
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Figure 1.1: An illustrative example demonstrating a webpage with three different
types of slots. Advertisers’ arrivals tend to be independent as each advertiser deter-
mines why type of slot he looks for in advance.

characterization of the publisher’s operation based on the closed-form solution can

serve as a building block for more complex setting such as competition (see Section

3.3).

1.3 The Model

We consider a web publisher facing uncertain demand from advertisers requesting

advertising space and uncertain supply of impressions from viewers2. The advertis-

ers request their impressions through an ad network. The ad network supplies the

web publisher with advertisers as long as the publisher has space available. If no

space is available the network does not assign ads to that publisher. This implies

that the publisher’s website is a loss system (see the Appendix for details on ad

networks). Our models also apply to the setting where direct sales channels are used

2The ad impressions are often referred to as ad inventory, i.e., the impressions are the items that
satisfy the advertisers’ demand.
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with advertisers not willing to wait for space to become available.

A web publisher often charges different prices based on the size of the ad, the

page on which the ad is posted, and the ad’s allocated position on the page; e.g.,

the leaderboard (the horizontal banner at the top) on the homepage of a news site is

more expensive than a small square at the bottom of the lifestyle page. Hence, when

a web publisher registers with an ad network it classifies similar advertising slots

that are charged the same price and registers each group with a separate tracking

code.

We assume the web publisher’s website (the system) contains J pages labeled

from 1 to J . For example, for a news site these pages could correspond to the

business page, travel page, etc. Each page can have several groups of ads that are

priced equally. For instance (see Figure 1.1), the top of the page can display two

equally sized ads. Likewise, similar ads can be positioned along the left and right

sides of the page (skyscrapers), while several small ads can be placed at the bottom

(rectangles). This leads to a total of three ad groups. More formally, for each page

j we group the ads into M j groups (the subsystems) of equivalent slots, where each

subsystem m, 1 ≤ m ≤ M j, contains nj,m equivalent slots. (In Figure 1.1 we have

M j = 3, nj,1 = 2, nj,2 = 4, and nj,3 = 4.) We denote by λj,m the rate with which the

advertisers arrive requesting space in the subsystem (j,m). An advertiser requesting

a slot in groupm on page j requires his ad to be posted on the website until displayed

Xj,m times to viewers visiting the system. Xj,m is a random variable. We denote the

traffic rate of viewers to a page j by μj.

The publisher can often serve more advertisers than there are slots. For example,

two ads could share the same slot with each ad displayed to every other viewer. We

can experience this kind of rotation of ads into slots when we reload a webpage and
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see a new set of ads. Then if we continue reloading the page we come back to the first

set of ads. We denote sj,m as the number of sets of ads being served in subsystem

(j,m), i.e., we need to refresh the page sj,m times to see the same set of ads being

displayed.

Furthermore, we note that in practice, the publisher does not usually leave a slot

empty; rather it places a “default” ad in there. A default ad (or a filler ad) is often

the publisher’s own ad that does not generate any revenue. Then, when a revenue

generating ad is sent to the publisher it would immediately free up this slot.3

The publisher’s goal is to maximize its total revenue rate by determining the

right prices to charge. The revenue rate for each subsystem consists of the payments

made by an advertiser multiplied by the “effective” demand rate for that subsystem.

Each payment consists of the price per impression, denoted by pj,m, multiplied by

the number of impressions requested, Xj,m. We capture the price-sensitivity of the

advertisers with the price-demand function, pjm(λ
j,m), which is assumed to be contin-

uous and decreasing in the arrival rate of the advertisers. (In Sections 1.7.1 and 1.7.4

we consider the price also to depend on the number of impressions.) Even though

it might not be trivial for the publisher to determine this function, we assume it

can do so with trial and error. (Ad networks often encourage publishers to start by

offering low prices and then gradually increase them to the appropriate value.) The

process of advertisers being matched to web publishers based on type preference and

willingness-to-pay can be modeled specifically. However, ultimately it will lead to a

price-demand relationship. We will not model the process in detail here but provide

in the Appendix a description, from one of the ad networks, of the matching process.

3Sometimes the ad network provides the publisher with filler ads. We show in the Online
Supplement that charging a (fixed and usually low) price for the filler ads does not affect our
pricing results.
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Note that an advertiser chooses his desired subsystem in advance when registering

with the ad network. For instance, he may request a right hand side banner on the

sport page. If that subsystem is fully occupied at the publisher’s site then the

network does not offer slots in this subsystem. Given that the publisher registers

each subsystem separately with the ad network, we consider the demand for each

subsystem to be independent.

Now, only a part of the advertisers’ demand per time unit can usually be met

by the publisher. That is, the demand rate for each subsystem is scaled down by

the probability that there are advertising slots available. We denote the probability

of having i advertisers in subsystem (j,m) by Pj,mi , i ∈ {0, ..., sj,mnj,m}. Note that
a total of sj,mnj,m advertisers can be served with sj,m advertisers sharing the same

slot.

As we have a one-to-one relationship between the prices and the arrival rates

of the advertisers, we will optimize the revenue rate with respect to the arrival

rates and then determine the prices from the price-demand functions, pjm(λ
j,m). The

optimization problem of the publisher of maximizing its expected revenue rate can

be formulated as follows:

max
Λ1,...,ΛJ

R(Λ1, ...,ΛJ) =

J∑
j=1

Mj∑
m=1

λj,m(1− Pj,m
sj,mnj,m

(λj,m;Xj,m, nj,m, sj,m, μj))pj,m(λj,m)E(Xj,m)

Λj =
(
λj,1, ..., λj,M

j
)t
∈ [0,+∞)Mj

, j = 1, ..., J. (1.1)

In this formula Pj,m
sj,mnj,m

is the probability that the subsystem (j,m) is full. There-

fore, λj,m(1 − Pj,m
sj,mnj,m

(λj,m;Xj,m, nj,m, sj,m, μj)) is the effective advertisers’ arrival

rate to subsystem (j,m). (We are slightly abusing the notation by writing Pj,m
sj,mnj,m

as a function of X.) Note that since the demand processes of the subsystems are
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independent and the publisher is considered a risk neutral decision maker, we can

write the publisher’s problem as the sum over all the subsystems. (More on this

later.)

For the next sections we make the following assumptions. However, in Section

1.7 we illustrate how our results hold without them.

Assumption 1 Advertisers’ demand follows a Poisson process. The demand for

the publisher’s slots belonging to the subsystem (j,m) comes through an ad

network. We do not attempt to model the operation of the ad network rather

assume that the publisher receives a certain rate of demand that depends on

the price it offers for a certain number of impressions. For tractability, we

assume that the demand for subsystem (j,m) is stationary and follows a Poisson

process with rate λj,m. A Poisson assumption of this type is common in the

service literature (see e.g. Savin et al. 2005). Our goodness-of-fit tests in

Section 1.7.3 based on real data from a Scandinavian web publisher indicate

that this is a restrictive assumption. However, our extensive simulation analysis

in Section 1.7.3 illustrates that the Poisson assumption minimally affects the

optimal revenues.

Assumption 2 Advertisers are offered the same number of impressions. We assume

the web publisher offers a single number of impressions xj,m, i.e., the ad will be

shown to xj,m viewers. This assumption is restrictive, as the advertisers may

choose to request different numbers of impressions. Nevertheless, in Sections

1.7.1 and 1.7.4 we consider different generalizations of this assumption and

show through numerical simulations that even if the advertisers choose different

numbers of impressions according to the random variable Xj,m and charge a

price depending on Xj,m, the problem can be well approximated by assuming
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that all advertisers request xj,m = E(Xj,m) with a single price charged. On

a different note, some ad networks allow the advertisers to request a certain

advertising campaign length instead of the number of impressions. We consider

that case in Section 1.7.2.

Assumption 3 Viewers’ visits follow a Poisson process. The viewers are assumed

to visit a webpage containing a subsystem (j,m) according to a Poisson process

with rate μj. This assumption could be considered restrictive as some research

supports that web traffic shows self similarity, long range dependence and heavy

tailed distribution (see Gong et al. 2005), which are not properties of the Pois-

son process. However, other studies recognize that a Poisson distribution is

a reasonable assumption (see Cao et al. 2002). Our goodness-of-fit tests in

Section 1.7.3 based on real data from a Scandinavian web publisher indicate

that this is an appropriate assumption. Furthermore, our extensive simula-

tion analysis in Section 1.7.3 illustrates that the Poisson assumption minimally

affects the optimal revenues.

When an advertiser requests a particular type of slot that is available in one of the

publisher’s subsystem, the ad is displayed. More specifically, when a viewer arrives

at that page all the advertisers whose ads are displayed are served together. That

is, the remaining numbers of impressions for all the displayed ads decrease by one at

the same time. We refer to this phenomenon as synchronization or the synchronized

service. Synchronization differentiates the publisher’s system from classic multi-

server systems, where servers are independent.

If we consider the case with no rotation of ads into slots, i.e., sj,m = 1, then

it takes xj,m viewers with exponential interarrival times with rate μj to serve one

advertiser in subsystem (j,m). Therefore, the service time of an advertiser follows
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Erlang(xj,m, μj,m) distribution. The fact that the displayed slots operate in a syn-

chronized manner makes this system different from the Erlang Loss System, denoted

by M/Exj,m/nj,m/nj,m in our context, where servers operate independently. Note

that with only one slot (i.e. nj,m = 1) there is no notion of synchronized servers and

the web publisher’s system is equivalent to the Erlang Loss System. For this case,

the probability of having the subsystem (j,m) full is P1 = rj,mxj,m

1+rj,mxj,m
(see Gross and

Harris (1998)) where rj,m = λj,m

μj
.

Let us now consider the service structure for the case with rotation of ads, i.e.,

sj,m > 1. We assume that each slot can display up to sj,m different ads, one at a

time sequentially, i.e., up to sj,m ads can share the same slot. Hence, every time the

webpage is loaded one of the ads sharing the slot is displayed to the viewer. Since

each ad is only shown to every sj,m viewer, sj,mx viewers need to visit the website

to complete the service for each ad. In addition, the ad might need to wait for its

turn among other ads in the same slot. We denote by H the initial position of the

ad among the ads that share the slot, with 1 ≤ H ≤ sj,m. For example, H = 1

means that the ad is going to be immediately displayed to the next viewer, while

H = h indicates that the ad is going to be displayed to the hth viewer. Hence, a

total of sj,mx+H − 1 viewers need to visit the website to complete the service of an
ad. As H << sj,mx we assume that the waiting time of starting display is negligible

and the number of impressions needed to complete each advertiser’s service can be

well approximated with sj,mx. As a result, the publisher’s revenue function can be

re-expressed as:

max
Λ1,...,ΛJ

R(Λ1, ...,ΛJ) =

J∑
j=1

Mj∑
m=1

λj,m(1− Pj,m
sj,mnj ,m

(λj,m; sj,mxj,m, sj,mnj,m, μj))pj,m(λj,m)xjm

Λj =
(
λj,1, ..., λj,M

j
)t
∈ [0,+∞)Mj

, j = 1, ..., J. (1.2)
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Therefore, each subsystem m on page j, which has nj,m slots, delivers xj,m impres-

sions, and rotates among sj,m ads, is approximately equivalent to a system with

sj,mnj,m slots, that delivers sj,mxj,m impressions, without ad rotation.

Note that the revenue function in (1.2) is separable in the decision variables λj,m.

The reason is that the advertiser specifies his target class (i.e., subsystem) in advance

with the ad network. For instance, he may specify that his ad should be displayed

in the first page of a sport website as a side rectangle. The network then matches

this demand with the publisher’s listed specifications4. This means that the demand

processes for the subsystems are independent. Now, the service processes of the

subsystems are dependent as the number of ads occupying each subsystem depends

on the common arrival stream of viewers. However, as the publisher maximizes its

expected revenue rate the objective function depends on the sum of the expected

number of ads in each subsystem, which allows for separation of the revenues from

each subsystem. That said, instead of maximizing the whole revenue function, the

publisher simply maximizes each subsystem separately and for convenience we drop

the indices (j,m):

max
λ
R(λ) = λ(1− Psn(λ; sx, sn, μ))p(λ)x (1.3)

λ ∈ [0,+∞).

In order to solve the optimization problem above the full-state probability, Psn(λ; sx, sn, μ),

should be characterized. We derive its closed-form solution in the next section.
4Note that most ad networks are blind, which means that the advertiser does not know on which

website his ad will be placed.
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1.3.1 The Probability Distribution

Having Markovian arrival and service processes we can now model a subsystem using

Markov chains. For convenience, in this section we refer to this subsystem as a

system. Without loss of generality we set s = 1 and consider later how the rotation

affects our results. Note that even though we are ultimately interested in keeping

track of the number of advertisers in the system, in order to set up a Markov chain

we need to keep track of the system at a more detailed level; i.e., of the number

of impressions left to be delivered for each slot. When an advertiser arrives, he is

randomly assigned to one of the available slots with equal probability as they are

equivalent. This random ad-to-slot allocation means that we can keep track of the

dynamics of the system without distinguishing between the slots.

We formulate the problem as a queuing model with the state vector k = (k1, ..., ki, 0, ..., 0)

with 1 ≤ kj ≤ x for j = 1, 2, ..., i ≤ n. This indicates that in the system, there is one
slot with k1 impressions remaining (i.e., impressions left to be satisfied), another slot

with k2 impressions remaining, etc. Then there are n−i slots empty. As the slots are
considered to be identical, we do not distinguish between them. Consequently, any

rearrangement of vector k’s components does not lead to a new state. For example,

(5, 2, 0, 7), (7, 2, 5, 0), and (0, 7, 5, 2), all refer to the same state of the system. In

order to see the nature of the state transitions we consider the following example.

Consider the state of the system k = (k1, ..., ki, 0, ..., 0) with 1 ≤ kj ≤ x for

j = 1, 2, ..., i ≤ n. When a viewer arrives at the system, since all the ads are

displayed, the state of the system goes to k− = (k−1 , ..., k
−
i , 0, ..., 0) with rate μ, where

k−j = kj − 1, i.e., all the positive components’ values reduce by one at the same time
(the synchronization), while the zero components do not change. Note that one

important difference between the publisher’s system and the more traditional loss
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systems such as Erlang is that in those systems we do not need to define the n-tuple

vector k to characterize the system as we need here. As a result, the characterization

of the Erlang Loss System is significantly easier, which is due to the independence

among the servers (or lack of synchronization). Now, when an advertiser arrives, the

publisher assigns one of the empty slots to him with x impressions to be displayed.

Hence, the state of the system will do a transition from k to (k1, ..., ki, x, ..., 0), with

rate λ.

In order to find πk, the probability of finding the system in state k, we char-

acterize all possible states and transitions of the system and solve the flow balance

equations. The following proposition states the closed-form solution of the probabil-

ity distribution of the web publisher’s system. The proof of the proposition can be

found in the Appendix A. All other proofs can be found in the Appendix B.
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Proposition 1 The probability of a web publisher’s system with n slots being in state

k = (k1, ..., ki, 0, ..., 0), where k1, k2, ..., ki impressions are left in i slots and n− i are
empty is:

πk(r, x, n) =
ri(1 + r)n−i−1
n∑
j=0

(
x+n−1
j

)
rj
, i < n, (1.4)

πk(r, x, n) =
rn

n∑
j=0

(
x+n−1
j

)
rj
, i = n, (1.5)

where r = λ/μ. Moreover, the steady-state probability of having i advertisers in the

system is:

Pi(r, x, n) =

(
x+i−1
i

)
ri(1 + r)n−i−1

n∑
j=0

(
x+n−1
j

)
rj

, i < n, (1.6)

Pn(r, x, n) =

(
x+n−1
n

)
rn

n∑
j=0

(
x+n−1
j

)
rj
, i = n. (1.7)

Note that πk(r, x, n) does not depend on the actual number of impressions left in

each slot, it only depends on the number of filled slots.

Let us consider how the interaction between the empty and the occupied slots

comes through in the publisher’s system. In the formula for Pi(r, x, n), ri plays the

role of the i occupied slots while (1+r)n−i−1 plays the role of the n−i empty slots. The
multiplication of those two terms captures the effect of the interaction of i occupied

slots with n− i empty slots. Since in Pn(r, x, n) all the n slots are occupied there is
no interaction between the empty and the occupied slots. Therefore, Pn(r, x, n) does

not have a term of the form (1 + r).
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With the proposition above we have fully characterized the probabilistic prop-

erties of the web publisher’s system with a closed-form solution of the steady-state

probabilities. Next we provide some structural properties for Pn(r, x, n), the proba-

bility that the system is full and

L(r, x, n) = λ(1− Pn(r, x, n))x/μ, (1.8)

the average number of advertisers in the system (based on Little’s law). Those are

useful when proving properties of the optimal price for the web publisher to charge

in the next section.

Proposition 2 ∀x, n, r the full-state probability of the system, Pn(r, x, n), defined
by (1.7) satisfies:

(i) ∂Pn(r,x,n)
∂r

≥ 0,

(ii) Pn(r, x+ 1, n)− Pn(r, x, n) ≥ 0,

(iii) Pn+1(r, x, n+ 1) ≤ Pn(r, x, n).

This proposition confirms the intuition that the web publisher is busier if there

is more demand, less traffic, more impressions, and fewer slots. Numerical analysis

indicates that Pn is not necessarily concave in the number of impressions.

Proposition 3 ∀x, n, r the average number of advertisers, L(r, x, n), defined by
(1.8) and its increment ΔLx(r, x, n) = L(r, x+ 1, n)− L(r, x, n) satisfy:

(i) ΔLx(r, x, n) ≥ 0, ΔLx(r, x+ 1, n) ≤ ΔLx(r, x, n),

(ii) ∂L(r,x,n)
∂r

≥ 0, ∂2L(r,x,n)
∂r2

≤ 0,

(iii) L(r, x, n) ≤ L(r, x, n+ 1).
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Part (i) implies that the average number of advertisers in the web publisher’s

system is increasing and concave in the number of impressions. Hence, the publisher

is busier the larger number of impressions it offers. However, the impact levels off.

Part (ii) implies that the average number of advertisers in the system is increasing

and concave in the intensity, r. Hence, the publisher is busier with more demand,

less traffic, or higher demand-traffic ratio. However, the impact levels off. Finally,

Part (iii) indicates that the average number of advertisers in the web publisher’s

system increases in the number of slots. More slots on the website imply that fewer

advertisers are being rejected and more can be served.

1.4 Comparison With Known Queuing Models

As the synchronization of the publisher’s advertising slots leads to a novel queueing

model, in this section we briefly compare it to related models from a queueing theory

stand point before we move to the pricing section5.

1.4.1 Erlang’s Loss System

We first compare the web publisher’s model with theM/Ex/n/n queue, the so-called

Erlang’s loss system. As in our system this system does not have any waiting space

and the only jobs in the system are the ones being served by one of the n servers.

The difference comes from the operation of the servers.

In Erlang’s loss system the servers operate independently, while in our system the

slots are synchronized, i.e., the advertisers receive service simultaneously. Erlang’s

5The reader who is interested in pricing only can conveniently skip this part and move directly
to the next section.
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loss formula that represents the probability distribution of the number of jobs in the

system is the following:

PEi =
(xr)i

n!∑n
j=0

(xr)j

j!

, 0 ≤ i ≤ n,

which we can compare to the distribution for the web publisher’s system:

Pi =

(
x+i−1
i

)
ri(1 + r)n−i−1∑n

j=0

(
x+n−1
j

)
rj

, i < n,

Pn =

(
x+n−1
n

)
rn∑n

j=0

(
x+n−1
j

)
rj
.

If n = 1 the two formulas yield the same results as expected.

As we discussed before ri plays the role of the i occupied slots while (1 + r)n−i−1

plays the role of the n−i empty slots. The multiplication of those two terms captures
the effect of the interaction of i occupied slots with n− i empty slots. Since in Pn all
the n slots are occupied there is no interaction between the empty and the occupied

slots. Therefore, Pn does not have a term of the form (1 + r). This is different

from the M/Ex/n/n model with its independent servers, where the formula for Pi,

0 ≤ i ≤ n, has the same format even though there are empty servers.

In the following proposition we compare the probability of the system being full

for Erlang’s loss system and the web publisher’s system.

Proposition 4 The probability of a fully occupied system is higher for the web pub-

lisher than for the Erlang’s loss system, i.e., Pn ≥ PEn . In addition, the average

number of jobs in the web publisher’s system is less than the average number of jobs

in the Erlang’s loss system, L ≤ LE.
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This proposition shows that the online system is less efficient than Erlang’s loss

system with independent servers. This is intuitive as the synchronization of servers

imposes a restriction compared to independence.

1.4.2 Bulk Service

A bulk service system, denoted M/M [n]/1, has arrivals that are Poisson and the

service time is exponential. There are n slots for service and an infinite waiting

space. When n or less jobs are in the system they are all served at the same time

and if a job arrives during the service and a slot is empty that job is also served and

finishes at the same time as the others (memoryless service property). If there are

more than n jobs in the system only n are served simultaneously and the rest wait.

This system with the additional assumption of no waiting space is the same as

the online system with one impression. We can denote it by M/M [n]/1/n. Since

having one impression is not realistic for the online setting there does not seem to

be much to gain for us from the bulk service literature. However, next we illustrate

how we can use the results from the web publisher’s system to learn more about the

bulk service system. First, the solution of the system M/M [n]/1 (Gross and Harris

(1998)) is the following:

PB0 = (1− x0),

PBi = (1− x0)xi0, i = 1, 2, 3, ...,

where x0 is the unique solution (between zero and one) of the characteristic equation:

μxn+1 − (λ + μ)x + λ = 0 with λ as the customers arrival rate and μ as the service
rate (corresponds to the arrival rate of viewers, λv, in the online setting). The
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Figure 1.2: Comparison of the full-state probabilities

characteristic equation is of order (n+ 1) and has at most (n+ 1) roots but in most

applications there is one real root. The drawback of this formula is when n is large or

approaches infinity, i.e., the bulk service system has very large or infinite capacity, the

characteristic equation will be hard to solve. However, in our model when n → ∞
the assumption of having no waiting space does not play a role anymore and the

result from the web publisher’s model can be used to approximate the bulk service

solution. This is formalized in the following proposition.

Proposition 5 As the number of service slots in the bulk service system approach

infinity, n → ∞, the probability distribution of the number of jobs, PBi has the

following property:

PBi →
ri

(1 + r)i+1
for n→∞. (1.9)

In addition, the average number and the variance of jobs in the system are LB = r

and V arB = r(1 + r), respectively, where r = λ/μ.

23



2 4 6 8 10 12 14
1

1.5

2

2.5

3

3.5

4

4.5

Number of slots

A
ve

ra
ge

 n
um

be
r o

f j
ob

s 
in

 th
e 

sy
st

em

M/M[n]/1/n
M/M[n]/1

Figure 1.3: Comparison of the average number of jobs in the system

Let us explore this in a numerical example where we consider two systemsM/M [n]/1

andM/M [n]/1/n (which is the same as the online system with n slots and one impres-

sion) with λ = 15 and μ = 10 and different values for n. When calculating accurately

the average number of jobs in M/M [n]/1 (using the characteristic equations above

from Gross and Harris (1998)) and in M/M [n]/1/n (using Equations (1.7) and (1.8)

with x = 1) we obtain a difference in L, the average number of jobs in the system,

of less than 1.2% with n ≥ 10. Figure 1.3 illustrates this difference.

Note that L for the M/M [n]/1 system is higher as could be expected since there

can be jobs waiting in a queue ready to go into service while theM/M [n]/1/n system

needs to wait for the next arrival.

The full state probability is illustrated in Figure 1.2. The convergence of Pn is a

bit slower and there is less than 1.4% difference for n ≥ 10.

The bulk service system with Erlang service time (instead of exponential) is not

the same as the web publisher’s system. In the publisher’s system the “jobs” can leave
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and enter the “bulk”; i.e., the jobs being served simultaneously are not necessarily in

the same phase of Erlang distribution. However, in the bulk service system all jobs

belonging to the same bulk have the same service time.

1.5 The Optimal Price

The web publisher’s objective is to determine the price to charge per impression in or-

der to maximize the revenue rate, which we can write asR(λ) = λ(1−Pn(λ, μ, n, x))px =
L(λ)μp, based on Equation (1.8).

As we have a one-to-one relationship between the price and the arrival rate of the

advertisers, λ, we will optimize the revenue rate with respect to λ and then determine

the price from the price-demand function, p(λ). The optimization problem of the

web publisher can now be expressed as:

max
λ
R(λ) = λ(1− Pn(λ;μ, n, x))p(λ)x. (1.10)

λ ∈ [0,+∞).

The following proposition ensures the existence of the optimal solution and gives

an implicit equation for the optimal price.

Proposition 6 If the price-demand function, p(λ), is concave decreasing in the ad-

vertisers’ arrival rate, λ, then R(λ) is concave in λ. Furthermore, at the optimal

advertisers’ arrival rate, λ∗, the following condition is satisfied:

∂L(λ)

∂λ

∣∣∣∣
λ∗
p(λ∗) +

∂p(λ)

∂λ

∣∣∣∣
λ∗
L(λ∗) = 0. (1.11)
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Note that in order to ensure concavity of the objective function, p(λ) needs to

be concave. This includes a linear price, which is widely used in the economics

literature. In Section 1.6 we show that even some convex pricing functions give a

unimodal revenue function. (Other “weaker” conditions such as assuming concave

payment rate λp(λ) or monotonicity of the price elasticity −∂λ
dp

p
λ
are not sufficient.)

Furthermore, Equation (1.11) implies that at the optimal point, λ∗, the proportional

change in the average number of advertisers, L, equals the negative proportional

change in the optimal price, p(λ∗).

The proposition below confirms the intuitive results that the web publisher in-

creases its revenue by having more slots, offering higher numbers of impressions, and

having more traffic to its website. We denote R(λ∗) by Rn,x(λ
∗(n, x);μ) to emphasize

the dependence on n, x, and μ.

Proposition 7 The optimal revenue rate, Rn,x(λ∗(n, x);μ), defined by (1.10) satis-

fies:

(i) Rn,x(λ
∗(n, x);μ) ≤ Rn+1,x(λ∗(n+ 1, x);μ),

(ii) Rn,x(λ
∗(n, x);μ) ≤ Rn,x+1(λ∗(n, x+ 1);μ),

(iii) Rn,x(λ
∗(n, x);μ1) ≤ Rn,x(λ∗(n, x);μ2), μ1 ≤ μ2.

Note that although some of the results of Propositions 2, 3, and 7 are intuitive,

we will see in Section 3.3 that a few of them are overturned in competitive settings.

For instance, part (ii) of Proposition 7 mentions that the optimal revenue increases

with the number of slots in the publisher’s system. However, we note that in the

competition setting more slots may no longer mean more revenue. Furthermore, we

observe a similar interesting behavior with respect to the web traffic μ indicating
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that in the competition setting more traffic to the publisher’s system may not mean

more revenue (see Section 3.3).

The following proposition states the counter-intuitive result from a marketing

point of view that it is optimal to charge more per impression if the advertisers are

offered a higher number of impressions.

Proposition 8 If the price-demand function, p(λ), is concave decreasing in the ad-

vertisers’ arrival rate λ, then p(λ∗) is increasing in x.

This proposition is interesting as in practice web publisher’s usually offer quantity

discounts. However, from an operational point of view when more impressions are

requested per advertiser, the advertisers provide more workload to the system and

fewer advertisers are needed, which means a higher price can be charged. Practically

speaking, the web publisher should not offer quantity discounts from an operational

point of view. All publishers we had a conversation with offer quantity discounts

except Yahoo!. Prof. Preston McAfee, a vice president and senior research fellow at

Yahoo!, confirmed that they now increase the CPM price for large contracts instead

of giving a discount. However, they did not have any theoretical underpinnings for

doing so, rather they had come to this pricing approach through a series of trials and

errors over time. We were pleased to offer a theoretical explanation. It is interesting

to mention that our analysis of the competitive setting indicates that larger contracts

impact not only the publisher offering them but also its competitor. Hence, both

will charge a higher price if one offers more impressions.

We note that in the price-demand function, p(λ), we have not yet considered the

fact that advertisers might not be willing to pay as much for their ad to be posted on

a website with many ads compared to a website with few. To capture this feature,
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we set the price to depend not only on the advertisers’ arrival rate, λ, but also on the

number of slots n. Proposition 9 describes the solution of the publisher’s objective

revenue function. We use the notation λ∗(n) to emphasize the implicit dependence

on n at the optimal value.

Proposition 9 Let the price function p(λ, n) be decreasing in the advertisers’ arrival

rate, λ, and the number of slots, n. In addition, let nc ∈ R+ be the continuous version
of n. Given the following property is satisfied:

p(λ, nc)

L(λ, nc)
≤ min(− p

′′
λnc

L
′′
λnc

,− p
′′
λλ

L
′′
λλ

) (1.12)

then:

(i) ∂L(λ,n)
∂λ

∣∣∣
λ∗
≥ 0,

(ii) λ∗(n+ 1) ≥ λ∗(n),

(iii) p(λ∗(n+ 1), n+ 1) ≤ p(λ∗(n), n),

(iv) L(λ∗(n+ 1), n+ 1) ≥ L(λ∗(n), n).

Proposition 9, Part (iv) indicates that with an upper bound on the ratio of

the price and the number of advertisers in the system, the publisher has more ads

on display with a larger number of advertising slots, even though advertisers are

discouraged by a large number of advertising slots.
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1.6 Numerical Analysis

In Section 1.5, we derived the optimal price for the publisher to charge and sev-

eral structural properties. In this section, we show numerically that those structural

properties hold for more general price-demand functions than concave ones. More-

over, we provide further insights on how the number of slots on a website, the web

traffic, the offered impressions, and the number of ads that share a slot affect the

publisher’s system.

1.6.1 Advertising Slots

We first explore the properties of the optimal revenue and prices with respect to

the number of advertising slots. The viewers’ arrival rate at the publisher’s website

is μ = 2, 000. Each advertiser is offered x = 100, 000 impressions through the ad

network. The price-demand relationship (per impression) for the advertisers is set

p(λ) = 0.02− 0.2λc, where c = 0.8, 1, or 1.2, i.e., the price function is convex, linear,
or concave.

An extra slot on the website means additional capacity to serve advertisers.

Hence, the publisher charges a lower price to attract more advertisers as indicated

in Figure 1.5 and by doing so it increases the revenues (see Figure 1.4). However,

this effect levels off as indicated for c = 0.8 in Figures 1.4 and 1.5.

As in Proposition 9 we set the price to depend not only on the arrival rate

of advertisers, λ, but also the number of slots n. We consider the following price

function:

p(λ, n) = 0.02− 0.2λc − 0.001n.
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Figure 1.4: Optimal revenue vs. slots
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Figure 1.5: Optimal price vs. slots
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Figure 1.6: Optimal revenue vs. slots with price depending on number of slots

Figures 1.6 and 1.7 show the optimal revenue and the optimal price vs. number

of advertising slots taking into account that ads can jeopardize each other.

Comparing Figures 1.4 and 1.6, we can see that the optimal revenue does not

continue to increase with the number of slots as before. Instead, after a certain

number of slots the impact of the price sensitivity with respect to the number of

slots starts playing a role and the revenue starts decreasing. Here, the optimal

number of slots to choose varies from three to four slots depending on the price-

demand relationship. On the price side, Figure 1.7 indicates that the optimal price

decreases more sharply in the number of slots than before. This means that the web

publisher has to lower the price faster to attract the customers lost due to the impact

of the increased number of slots.
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Figure 1.7: Optimal price vs. slots with price depending on number of slots

1.6.2 Impressions

Next, we consider the sensitivity of the optimal price and revenue with respect to

the number of impressions. We assume that there are two slots on the website,

n = 2, and the price-demand function for the advertisers is chosen as before to be

p(λ) = 0.02− 0.2λc, where c = 0.8, 1 or 1.2.

As shown in Proposition 8 and illustrated in Figures 1.8 and 1.9, the optimal

revenue and the optimal price increase with the number of impressions. From a

marketing point of view, one might expect quantity discounts, i.e., that the price

per impression would decrease with the number of impressions. However, from an

operational point of view the opposite is optimal as more impressions mean the web

publisher needs fewer advertisers and thus can charge higher price (based on the

decreasing price-demand curve).

By considering the advertisers’ expectations for quantity discounts, we incorpo-

rate this in a simple way in the price-demand function, p(λ) = 0.02− 0.2λc− 10−7x.

32



10 20 30 40 50 60 70 80 90 100
0

5

10

15

20

25

30

35

40

Number of impressions (1000s)

O
pt

im
al

 re
ve

nu
e

c = 1.2
c = 1
c = 0.8

Figure 1.8: Optimal revenue vs. impressions

10 20 30 40 50 60 70 80 90 100
0.008

0.009

0.01

0.011

0.012

0.013

0.014

0.015

Number of impressions (1000s)

O
pt

im
al

 p
ric

e

c = 1.2
c = 1
c = 0.8

Figure 1.9: Optimal price vs. impressions
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Figure 1.10: Optimal revenue vs. impressions with price depending on number of
impressions

Using this function we explore how the optimal price and revenues change with the

number of impressions. By incorporating quantity discounts in the pricing, the op-

timal revenue does not continue to increase as before, instead it starts decreasing,

indicating an optimal value for the number of impressions to offer.

1.6.3 Ad Rotation

We consider the impact of serving more advertisers than there are slots by rotating

the ads into slots. As defined before, s is the number of ads that share a slot.

We let the number of slots on the website be n = 4 and as before we assume the

price-demand function to be p(λ) = 0.02− 0.2λc, where c = 0.8, 1 or, 1.2.

In Figure 1.12, in which the number of impressions is set to be x = 100, 000, we

observe that the optimal price is increasing in the number of rotating ads, while this

relationship is overturned in Figure 1.13 where we assume x = 1, 000, 000. Hence, the
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Figure 1.13: Optimal price vs. the number of rotating ads sharing the same slot. In
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rotation does not have an obvious impact on the publisher’s optimal decisions. First,

increasing the number of rotating ads leads to an increase in the system’s capacity as

more advertisers can be served at the same time. However, rotating a larger number

of ads means that advertisers take longer to be served and occupy the capacity of the

system for longer. Hence, fewer advertisers are needed. Depending on the system

parameters (such as the number of impressions) one of these two impacts dominates.

1.7 Extensions

Our model provides a web publisher with insights on how to manage its revenues

based on the price to charge and the operational characteristics of its website. We

have focused on the fundamental trade-off of matching supply with demand under

the assumptions listed in Section 1.3. The web publisher’s advertising operation

is quite complex and we do not attempt to capture every element of it. However,
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we have provided significant steps towards a systematic approach. In the following

sections, we illustrate how our model can be extended and used as a building block

for more complicated settings than considered in the previous sections. In addition,

we show how our results hold without the assumptions listed in Section 1.3.

1.7.1 Different Numbers of Impressions

Publishers usually display any number of impressions requested by advertisers or

allow them to choose among several listed quantities. As mentioned in Section 1.3,

we can model this choice by definingX as a random variable representing the number

of impressions chosen by advertisers. In this section, we compare the simulated values

of two system quantities when random numbers of impressions are requested, with

their corresponding analytical values when all advertisers request the same number

of impressions, E(X) (Assumption 2). The random variable X can either have a

discrete distribution representing a list of numbers offered, or it can be assumed to

be continuous (as X is usually large) representing that any number can be chosen.

We denote this system by Stochastic Request system (SR) and the system where

Assumption 2 applies by Deterministic Request system (DR). Solving this SR system

analytically does not appear to be tractable but to gain further insights, we perform

a simulation study and simulate the system quantities of interest; L, the average

number of advertisers in the system and Pn, the probability that the system is full.

In our simulation study, we let the advertisers’ arrival rate be equal to 0.1 per time

unit, λ = 0.1, and the viewers’ arrival rate be equal to 10 per time unit, μ = 10.

These numbers are chosen for illustration purposes. The number of slots is chosen

to be, n = 4. Each arriving advertiser requests X = Y · 1{Y≥0} impressions, where
Y ∼ N(μ, ϑμ), i.e., X is a truncated normal random variable. We compare the SR
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Figure 1.14: Comparison of L vs. the simulated LSR

system with the DR system, in which all advertisers request E(X) = μ/(1− Φ(−1
ϑ
))

impressions (the mean of a truncated normal random variable), wherein Φ(·) is the
standard normal distribution and (1 − Φ(−1

ϑ
)) is the probability of the event {X ≥

0}. We run each simulation for 100, 000 time units varying ϑ from ϑ = 0.05 to

ϑ = 1. Figures 1.14 and 1.15 compare the values of LSR and PSRn obtained through

simulations with the corresponding values L and Pn calculated using the Equations

(1)-(1.8) for the DR system with x = E(X) = μ/(1− Φ(−1
ϑ
)).

Based on Figures 1.14 and 1.15 we can see that the performance measures con-

sidered for the SR system are very similar to the ones of the DR system with an

increasing difference when the variance increases, as can be expected. Other simu-

lation results using different distributions for X confirm this result. These results

indicate that the DR system seems to be an accurate estimator for the SR system’s

behavior even for low numbers of impressions.

Note here we have explored two quantities characterizing the operation of the
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Figure 1.15: Comparison of Pn vs. the simulated PSRn

system, L and Pn. In Section 1.7.4 we explicitly explore the impact of the random

number of impressions on the revenues and consider the case where the price depends

on the number of impressions, X. Hence, the publisher can adjust the optimal price

based on the requested impressions.

1.7.2 Fixed Advertising Campaign Length

Some ad networks allow the advertisers to request a certain advertising campaign

length instead of the number of impressions. The publisher might then give some

estimates on how many impressions the advertiser can expect to receive during the

campaign. This system is a special case of the SR system since the number of

impressions received by each advertiser during a horizon T , is a random variable

XT ∼ Poisson(μT ), where μ is the viewers’ arrival rate, based on the fact that the
interarrival times of the viewers are exponential. Following the approach of the last

section, we can approximate this system of fixed campaign length by setting the
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single impressions’ number to be E(X
T
) = μT in the DR system.

We can extend the fixed campaign length system to incorporate not a single hori-

zon T but multiple horizon values that the advertisers can choose from. We define

the choice set as Ω = {T1, ..., Tm}. We can argue that this system is equivalent to the
SR system. We let τ i ∈ [0, 1] be the percentage of the advertisers preferring to stay
in the system for Ti ∈ Ω time units. Since the viewers’ interarrival times are expo-
nential each advertiser choosing Ti is served with XTi ∼ Poisson(μTi) impressions.
This system of multiple campaign lengths can be approximated with a DR system

with x =
m∑
i=1

τ iμTi impressions. The continuous version of the multiple campaign

lengths system, in which the service time T is a continuous random variable can be

approximated by a DR system with x = E(X) =
∫∞
0
μth(t)dt impressions, where

T ∼ h(T ).

1.7.3 Non-Poisson Arrivals

In Section 1.3 we assumed that the advertisers’ arrivals at the web publisher from

the ad network follow a Poisson process (Assumption 1), which might not be the

case in reality. In addition, the viewers’ arrival process might not be Poisson either

(Assumption 3). In this section, we explore other distributions for both the demand

and supply sides. Figures 1.16 and 1.17 show the empirical distributions, based

on data from a large Scandinavian web publisher, for the advertisers’ and viewers’

arrivals as well as other fitted distributions. For the arrival distribution of the viewers,

the Poisson, Weibull, and Normal distributions pass the Kolmogorov-Smirnov (KS)

and Anderson-Darling (AD) goodness-of-fit tests at the 5% significance level. For

the arrival distribution of the advertisers only the Uniform and Normal distributions

pass the tests, not the Poisson. However, even though assuming Poisson arrivals of
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Figure 1.16: The empirical cumulative distribution of the viewers’ arrivals obtained
from a Scandinavian publisher based on daily data, and other fitted distributions.

advertisers might not be a realistic assumption, our simulation study illustrates that

the revenues of the web publisher are only slightly affected.

In our simulation study, we specifically examine the amount of revenue a pub-

lisher can lose by using the base model’s solution obtained in Section 1.5, while

both the advertisers’ and the viewers’ arrivals, in reality, do not follow a Poisson

process. We let the viewers’ arrival rate be μ = 1. For the advertisers’ interarrival

time distributions, we consider the following distributions: Normal with mean 1/λ

and standard deviation 1/λ, Erlang-2 with mean 1/λ and standard deviation 1/
√
2λ,

Erlang-4 with mean 1/λ and standard deviation 1/2λ, uniform with the two para-

meters 0 and 2/λ, exponential with rate λ, and finally deterministic arrivals. For the

viewers’ inter arrival time distributions, we consider the same distributions with λ

replaced with μ = 1.

The number of slots is n = 4. We choose the pricing function to be p(λ) =

0.02 − 0.2λ0.8. Moreover, we let the number of impressions be x = 1000. The steps
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Figure 1.17: The empirical cumulative distribution of the advertisers’ arrivals ob-
tained from a Scandinavian publisher based on monthly data, and other fitted dis-
tributions.

of each simulation process are as follows:

First, we obtain the advertisers’ optimal arrival rate, λ∗D1 , when the advertisers’

interarrival times follow the generic distribution D1, and the viewers’ interarrival

times follow D2. This includes simulating the publisher’s system for multiple values

of λ and then selecting λ∗D1,D2 , the rate that gives the highest revenue. We represent

the revenue related to λ∗D1,D2 with RD1,D2(λ
∗
D1,D2

).

Next, we compute the optimal value for λ using the solution provided in Equation

(1.11). We represent this with λ∗Exp. If the web publisher used our analytical solution

for a system that does not have Poisson arrivals on either side, its revenue would

be RD1,D2(λ
∗
Exp), where RD1,D2(λ

∗
Exp) is the simulated revenue given the advertisers’

arrival rate is λD1,D2 = λ
∗
Exp.
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Finally, we compute the revenue gap using the following formula

Gap =
RD1,D2(λ

∗
D1,D2

)−RD1,D2(λ∗Exp)
RD1,D2(λ

∗
D1,D2

)
× 100(%). (1.13)

Figure 1.18 shows a schematic presentation of how the revenue gap is obtained using

the above steps.

Table 1.1 shows the relative revenue performance gaps for the different interarrival

time distributions considered for advertisers’ and viewers’ arrivals. We can observe

that the computed revenue gaps are usually between 0.1%− 3%. This suggests that
the Poisson policy tends to be a relatively accurate estimate for the publisher’s model

even when both the viewers’ and the advertisers’ arrivals are non-Poisson. Neverthe-

less, we notice that the revenue gap is considerably higher (i.e., about 9.4%) when the

viewers’ and the advertisers’ arrival processes are both deterministic. This implies

that Poisson’s policy may not be a good approximate when there is no uncertainty
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in the model. However, we notice that even when either arrival processes is not

deterministic, Poisson tends to perform well. Likewise, other simulation results indi-

cate that the converse also tends to be true. That being said, a purely deterministic

system might not be a good approximation for the Poisson system. This emphasizes

the fact that uncertainty plays a significant role in the publisher’s system.

Interarrival dist. Viewers
Advertisers Erlang-2 Erlang-4 Normal Uniform Det. Exp.
Erlang-2 1.08% 1.15% 1.03% 0.99% 1.23% 1.34%
Erlang-4 0.40% 0.59% 0.50% 0.44% 0.56% 0.13%
Normal 0.52% 1.06% 1.09% 2.26% 2.48% 0.06%
Uniform 1.03% 1.05% 0.79% 1.23% 0.95% 1.05%
Det. 2.93% 2.89% 3.29% 2.80% 9.42% 2.73%
Exp. 0.10% 0.27% 0.38% 0.60% 0.24% −

Table 1.1: The relative performance gap
RD1,D2 (λ

∗
D1,D2

)−RD1,D2 (λ∗Exp)
RD1,D2 (λ

∗
D1,D2

)
×100(%)

1.7.4 Random Price

To validate our results further, we consider the case where each advertiser requests

a random number of impressions, X, and the publisher charges a (random) price

accordingly. We specifically examine the amount of revenue a publisher can lose by

using the base model’s solution obtained in Section 1.5 (based on Poisson arrivals,

a single number of impressions offered, and a single price charged) to determine the

price, while the impressions requested are random and both the advertisers’ and the

viewers’ arrival processes are non-Poisson.

To explore this scenario, we assume the price function to be p(λ,X) = 0.02 −
0.2λ0.8 − 10−7X, where X is a random variable following the arbitrary distribution

f , with Ef (X) = 1000. The rest of the simulations’ settings is the same as in Section

1.7.3. The steps for each simulation process are as follows:
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First, we obtain the advertisers’ optimal arrival rate, λ∗X,D1,D2
, when the adver-

tisers’ interarrival times follow the generic distribution D1, the viewers’ interarrival

times follow D2, and each advertiser requests a different number of impressions ac-

cording to a random variable X. This includes simulating the publisher’s system

for multiple values of λ and then selecting λ∗X,D1,D2
, the rate that gives the highest

revenue. We represent the revenue related to λ∗X,D1,D2
with RX,D1,D2

(λ∗X,D1,D2
).

Second, we compute the optimal value for λ using the closed-form solution pro-

vided in Equation (1.11) by assuming the price function to be p(λ, x) = 0.02 −
0.2λ0.8 − 10−7x, where x = Ef (X) = 1000. We represent this optimal value with

λ∗x,Exp. If the web publisher uses our analytical solution with the average demand x,

for a system that does not have Poisson arrivals of advertisers and viewers, and each

advertiser requests X impressions its “real” revenue would become RX,D1,D2
(λ∗x,Exp).

Finally, we compute the revenue gap using the following formula

Gap =
RX,D1,D2

(λ∗X,D1,D2
)−RX,D1,D2

(λ∗x,Exp)

RX,D1,D2
(λ∗X,D1,D2

)
× 100(%).

Figure 1.19 illustrates a schematic presentation of how the revenue gap is com-

puted through the above steps.

Table 1.2 shows the relative revenue performance gaps for the different distri-

butions for the number of impressions resulting in random prices as well as the

interarrival time distributions for the advertisers when D2 is a normal distribution.

We observe that the computed revenue gaps are on average between 0.08%− 1.46%.
This suggests that the optimal revenue when considering the average of the requested

number of impressions tends to be very close to the revenue obtained through the

real-time price adjusting based on each advertiser’s requested impressions, while the
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Figure 1.19: A schematic presentation of calculating the revenue gap when the price
function depends on the number of impressions X in which X is a random variable.

f (X ) Advertisers (D1)
Impressions Erlang-2 Erlang-4 Normal Uniform Exponential
Erlang-2 0.42% 1.25% 0.28% 1.20% 0.33%
Erlang-4 0.29% 1.46% 0.63% 0.96% 0.08%
Normal 0.67% 0.40% 0.13% 0.95% 0.15%
Uniform 0.29% 0.43% 0.19% 0.57% 0.50%

Table 1.2: The relative gap
RX,D1,D2 (λ

∗
X,D1,D2

)−RX,D1,D2 (λ∗x,Exp)
RX,D1,D2 (λ

∗
X,D1,D2

)
×100(%)

arrival processes are non-Poisson.

1.8 Conclusion

Online advertising is a promising research area suitable for quantitative approaches.

Until recently this area has received little attention from the operations management

community. Managing revenues in online advertising is a challenging task and few

systematic approaches exist in practice. This chapter is a step towards filling that
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gap.

We consider a web publisher that generates revenues from displaying advertise-

ments on its website with advertisers being supplied through an advertising network.

We focus on the main operational challenge of matching uncertain demand from

advertisers requesting advertising space to uncertain supply from viewers visiting

the website. The publisher faces challenging decisions of determining the prices to

charge, number of ads to display, number of advertisements to share each advertising

slots, and others. The publisher’s website can consist of multiple pages and each page

can have ads of different sizes posted in different locations. We group the website’s

advertising slots into subsystems that specify the characteristics of the slots such as

page, location on a page, size, and price. When a web publisher registers with an ad

network it registers each subsystem with a separate tracking code. This enables us

to decouple the publisher’s website into subsystems and analyze them separately.

We develop a stylized model of a publisher’s system with the arrival process cor-

responding to the advertisers who are supplied by ad networks and are interested

in posting their ads and the service process corresponding to the viewers visiting

the website. Given the fact that all advertisers on display pay when a single viewer

uploads the webpage, the advertisers are served in a “synchronized” manner. These

dynamics are different from those of known multi-server systems with independent

servers corresponding to advertising slots. We derive a closed-form solution of the

probability distribution of the number of advertisers in the system, which enables us

to characterize the price and other decision variables for the publisher and analyze

in detail. For example, we show that the optimal price to charge per impression

increases in the number of impressions, contrary to the quantity discount common in

practice. Yahoo! is the only publisher we came across that charges higher CPM price
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for larger contracts instead of giving a discount. We are pleased to offer the theoret-

ical explanation that they were lacking. Furthermore, we show that the increase in

the number of ads that share a slot has a non-obvious impact on the optimal price.

To illustrate how our model can be used as a building block for a more complicated

setting, we extend it to incorporate competition and provide some initial results.

We observe that some of our results hold in competitive settings while others are

overturned.

The framework for the web publisher’s operations can be expanded beyond the

results of this chapter. Even though cost-per-impression is a common pricing scheme,

others exist such as cost-per-click or even a mixture of the two. Cost-per-click con-

tracts require different models and comparison of them to cost-per-impression con-

tracts can be found in the next chapter. Furthermore, exploring competition between

web publishers with different information structures would be an interesting exten-

sion. We consider this topic in Chapter 3. In addition, given how easy it is to keep

track of viewers’ behavior and profile, targeted advertising is very attractive to adver-

tisers as well as to web publishers who can charge a higher price for a more targeted

audience. We have analyzed the operation of the web publisher from a steady state

point of view. Dynamic pricing would also be interesting and possible to implement

as advertisers often buy their advertising space online, which makes it feasible for

the web publisher to change the prices dynamically.

In summary, the modeling framework developed in this paper captures the fun-

damental operational challenges faced by a web publisher and with its closed-form

solution it can provide a basis for many promising research directions.
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Appendix A

A1. Advertising Networks

Publishers have ad slots
to sell. They set their ask

price

Advertisers target content
categories that match

their desired audience’s
interest

The ad network
categorizes the

publishers’ website

The ad network matches the publishers and advertisers
based on their specified categories

Each advertiser gives his
maximum bid price per

impression

Among the available publishers whose ask price is
lower than the advertiser’s maximum bid price one is

selected. All non-available publishers are automatically
filtered and hence ignored by the network

The banner ad is displayed in the selected publisher's
website

Figure 1.20: The general steps for the transaction between advertisers and web
publishers through advertising networks

Ad networks act as brokers between advertisers and web publishers. Ad networks

can operate in many different ways. Some ad networks set the price themselves (e.g.,

for non premium publishers at the ad network Clicksor), but many allow the publisher

to set the price to charge advertisers (e.g., Clicksor’s premium advertisers and on

ADSDAQ). In addition to the price, the number of impressions that the publisher will

deliver is also stated. The mechanism of how advertisers are allocated to publishers

varies. In some advertising networks the advertisers can choose with which publishers
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their ad is placed (e.g., Adtoll) while other ad networks define different categories of

target websites for advertisers to choose from based on the content of the websites,

viewer’s locations, etc. (so-called blind ad networks, e.g., Contextweb, Valueclick,

and Clicksor). For those ad networks, matching advertisers with suppliers is usually

along the following lines: First, the advertiser selects its target website category

and his maximum willingness-to-pay (called bid price). Then the network selects

the relevant publishers that match the characteristics of the website category. The

network eliminates the publishers whose CPM (called the ask price) is higher than

the advertisers’ willingness-to-pay. Finally, the ad network sends the advertisers to

one of these websites. Ultimately, the publisher receives a certain rate of demand that

depends on the price it offers for a certain number of impressions. Figure 1.20 shows

the summary of the steps for transaction between advertisers and web publishers

through advertising networks.

A2. Proof of Proposition 1

Lemma 10 Given x ∈ N, i ∈ N, and κ ∈ R, the following result holds:

x∑
k1=1

x∑
k2=k1

...
x∑

ki=ki−1

κ =

(
x+ i− 1

i

)
κ. (1.14)

Proof

Proofs of all lemmas are provided in Appendix C.

Lemma 11 Given k ∈ N ∩ [0, x− 1] and x ∈ N ∪ {0}, the following result holds:

x+k−1∑
i=k

(
i

k

)
=

(
x+ k

k + 1

)
. (1.15)
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Lemma 12 Given x ∈ N ∩ [n− 1,∞) with n ∈ N and r ∈ R+,

n−1∑
i=0

(
x+ i− 1

i

)
ri(1 + r)n−i−1 =

n−1∑
i=0

(
x+ n− 1

i

)
ri. (1.16)

Proof of Proposition 1

To prove Equations (1.4) and (1.5) we list the flow balance equations and show that

the probabilities are of the form:

πk1 = Ar
i(1 + r)n−i−1, (1.17)

πk2 = Ar
n, (1.18)

where k1 = (k1, k2, ..., ki, 0, ..., 0) represents the state of having i slots occupied (one

slot with k1 impressions left to satisfy, another one with k2 impressions left, etc.)

and n − i empty slots and k2 = (k1, k2, ..., kn) represents the state of having all n

slots occupied. We use the following notation for compactness and define:

k1
�
=

|G>0(k)|∑
j=1

kje
T
j , where |G>0(k)| < n,

and k2
�
=

|G>0(k)|∑
j=1

kje
T
j , where |G>0(k)| = n,

in which, unless otherwise specified, kj1 ≥ kj2 for j1 ≥ j2. eTj is an n-tuple row vector
where its jthcomponent is 1 and the rest of its components are zero. Moreover,

G>0(k) �= {j | kj > 0}, Gx(k) �= {j | kj = x}, (1.19)

G0(k) �= {j | kj = 0}, Gh(k) �= {j | kj = h}.
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Intuitively |G>0(k)| and |G0(k)| are the number of occupied and empty slots, respec-
tively. |Gx(k)| is the number of slots whose impressions left to satisfy are equal to x,
i.e., no impressions have been delivered for these slots.

Next, we show by summing over the relevant π′s that the probabilities of finding

a certain number of advertisers in the system are of the form:

Pi =

(
x+ i− 1

i

)
Ari(1 + r)n−i−1, i = 0, 1, 2, ..., n− 1, (1.20)

Pn =

(
x+ n− 1

n

)
Arn, i = n.

Finally, we use the fact that
∑n

i=0 Pi = 1 and solve for A.

We first consider a Markov chain where the state of the system is the vector

k =
|G>0(k)|∑
j=1

kje
T
j and kj represents the number of impressions left to satisfy in a slot.

(We do not distinguish between the slots.) After identifying the possible transitions

of the system, we list the flow balance equations. The flow balance equations are

equations are as follows:

i) For k =(0, ..., 0) = 0 we have:

rπ0 =

n∑
i=1

πvTi , where v
T
i

�
=

i∑
j=1

eTj . (1.21)

For example, if k = (0, 0, 0) then the transition equation becomes: rπ(0,0,0) =

π(1,0,0) + π(1,1,0) + π(1,1,1).

ii) The second group of states are when k =
|G>0(k)|∑
j=1

kje
T
j with |G>0(k)| < n (some

slots are empty) and |Gx(k)| = 0 (the impressions left to satisfy in all slots are

52



less than x). The transition balance equation for k becomes:

(1 + r)πk = πk+vT|G>0(k)|
+

|G0(k)|∑
q=|G>0(k)|+1

πk+vT|G>0(k)|+w
T
q
, (1.22)

where vT|G>0(k)|
�
=

|G>0(k)|∑
j=1

eTj and w
T
q

�
=

q∑
t=|G>0(k)|+1

eTj . For example, if we take

x = 5 and n = 3 then for the state k = (4, 0, 0) we have G>0(k) = {1} and
G0(k) = {2, 3}, vT|G>0(k)| = (1, 0, 0), wT

2 = (0, 1, 0), and w
T
3 = (0, 1, 1). Hence,

the flow balance equation becomes: (1 + r)π(4,0,0) = π(5,0,0) + π(5,1,0) + π(5,1,1).

iii) If k =
|Gx(k)|∑
j=1

xeTj +
|G>0(k)|∑

j=|Gx(k)|+1
kje

T
j where |G>0(k)| < n (some slots are empty),

|Gx(k)| > 0 (the impressions left to satisfy in some slots are x) then the flow
balance equation becomes:

(1 + r)πk = rπ(k−xeT1 )TDn×n, where Dn×n
�
= [e2

...e3
......
...en−1

...01×n]n×n. (1.23)

For example, if we take x = 5 and n = 4 and k = (5, 5, 4, 0) then k−xeT1 =

(0, 5, 4, 0) and D4×4 =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 0

1 0 0 0

0 1 0 0

0 0 1 0

⎤⎥⎥⎥⎥⎥⎥⎥⎦
4×4

. Hence, (k−xeT1 )TDn×n = (5, 4, 0, 0).

Therefore, the flow balance equation becomes: (1 + r)π(5,5,4,0) = rπ(5,4,0,0).

iv) If k =
|Gx(k)|∑
j=1

xeTj +
|G>0(k)|∑

j=|Gx(k)|+1
kje

T
j , where |G>0(k)| = n (all slots are occupied),

|Gx(k)| > 0 (the impressions left to satisfy in some slots are x) then the flow
balance equation becomes:

πk = rπ(k−xeT1 )TDn×nwhereDn×n = [e2
...e3
......
...en−1

...01×n]n×n. (1.24)

53



For example, if x = 5 and n = 4 and k = (5, 5, 4, 3) then k−xeT1 = (0, 5, 4, 3)

and D4×4 =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 0

1 0 0 0

0 1 0 0

0 0 1 0

⎤⎥⎥⎥⎥⎥⎥⎥⎦
4×4

. Hence, (k−xeT1 )TDn×n = (5, 4, 3, 0). Therefore,

the flow balance equation becomes: π(5,5,4,3) = rπ(5,4,3,0).

v) If k =
|G>0(k)|∑
j=1

kje
T
j with |G>0(k)| = n, (all slots are occupied), |Gx(k)| = 0 (the

impressions left to satisfy in all slots are less than x) then the flow balance

equation becomes:

πk = πk+vT|G>0(k)|
, where vT|G>0(k)| =

|G>0(k)|∑
j=1

eTj . (1.25)

For example, if x = 5 and n = 4 and k = (4, 3, 2, 1) then vT|G>0(k)| = (1, 1, 1, 1)

and the flow balance equation becomes: π(4,3,2,1) = π(5,4,3,2).

Next we verify that the functional form stated in Equations (1.17) and (1.18)

satisfies the Flow Balance Equations i) - v):

i) By inserting Equations (1.17) and (1.18) into the flow balance equation we

obtain a left hand side of Ar(1+ r)n−1 and a right hand side of A[r(1+ r)n−2+

r2(1 + r)n−3 + ... + rn−1(1 + r)0 + rn]. We use induction to show that both

sides are equal, i.e.,
∑n−1

j=1 r
j(1 + r)n−j−1 + rn = r(1 + r)n−1. We start with

n = 1 and note that both sides are equal to r. We now assume that the

equality holds for n = k, i.e.,
∑k−1

j=1 r
j(1 + r)k−j−1 + rk = r(1 + r)k−1. In

order to show that the equality then holds for n = k + 1 we need to show that
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∑k
j=1 r

j(1 + r)k−j + rk+1 = r(1 + r)k. We have that

k∑
j=1

rj(1 + r)k−j + rk+1 = (1 + r)

k−1∑
j=1

rj(1 + r)k−j−1 + rk + rk+1. (1.26)

Using the induction assumption we obtain

(1+r)[r(1+r)k−1−rk]+rk+rk+1 = r(1+r)k−rk+1+rk+1 = r(1+r)k, (1.27)

which completes the induction proof.

ii) Using a similar approach as for Case i) we need to show that

A(

n−i−1∑
j=0

ri+j(1 + r)n−i−j−1 + rn) = (1 + r)Ari(1 + r)n−i−1, (1.28)

which is the same as showing

n−i−1∑
j=0

rj(1 + r)n−i−j−1 + rn−i = (1 + r)n−i. (1.29)

To simplify the notation we set m = n − i. We then need to show that∑m−1
j=0 r

j(1 + r)m−j−1 + rm = (1+ r)m. We prove this equality by induction. If

m = 1 both sides of the equality are 1+r. Let us now assume that the equality

holds for m = k, i.e.,
∑k−1

j=0 r
j(1 + r)k−j−1 + rk = (1 + r)k. We now need to

show that the equality holds form = k+1, i.e., that
∑k

j=0 r
j(1+r)k−j+rk+1 =

(1 + r)k+1. We have

k∑
j=0

rj(1 + r)k−j + rk+1 = (1 + r)
k−1∑
j=0

rj(1 + r)k−j−1 + rk + rk+1. (1.30)

Using the induction assumption this equals to (1+r)[(1+r)k−rk]+rk+rk+1 =
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(1 + r)k+1, which completes the induction proof.

iii) We need to verify that (1 + r)Ark+j(1 + r)n−k−j−1 = rArk−1+j(1 + r)n−k−j,

which always holds.

iv) We need to verify that Arn = rArn−1, which always holds.

v) This equation always holds.

When deriving A, we first need to formulate Pi, the probability that there are

i advertisers in the system, and then use the fact that
∑n

i=0 Pi = 1 to solve

for A. First, we know that P0 = π0 = A(1 + r)n−1. Let us then consider i,

0 < i < n. The probability of having i advertisers in the system where each

has kj impressions left to satisfy with

k =

|G>0(k)|∑
j=1

kje
T
j , |G>0(k)| = i < n, |Gx(k)| = 0. (1.31)

Without loss of generality, let kj be increasing in j, i.e., k1 ≤ k2 ≤ ... ≤ ki. We
observe that Pi is the sum over all possible values that kj can take while there

are i people in the system (|G>0(k)| = i). Hence, by Lemma 17,

Pi =
x∑

k1=1

x∑
k2=k1

...
x∑

ki=ki−1

πk =

(
x+ i− 1

i

)
πk. (1.32)

As a result Pi =
(
x+i−1
i

)
Ari(1 + r)n−i−1 for i < n and Pn =

(
x+n−1
n

)
Arn.

Moreover, since
∑n

i=0 Pi = 1 we have that

n−1∑
i=0

(
x+ i− 1

i

)
Ari(1 + r)n−i−1 +

(
x+ n− 1

n

)
Arn = 1, (1.33)
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which gives

A =
1∑n−1

j=0

(
x+j−1
j

)
rj(1 + r)n−j−1 +

(
x+n−1
n

)
rn
. (1.34)

Finally, using Lemma 19 we get A = 1
∑n
j=0 (

x+n−1
j )rj

, which completes the proof.

�
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Appendix B

B1. Proofs of Other Propositions

Proof of Proposition 2 (i) In order to show Pn is increasing in r we show its

derivative with respect to r is always positive. By differentiating Pn with respect to

r and simplifying we get:

∂Pn
∂r

=

∑n
i=0

(
x+n−1
n

)(
x+n−1

i

)
rn+i−1(n− i)∑n

i=0

(
x+n−1

i

)
ri

≥ 0, (1.35)

which is always positive. Hence, Pn is increasing in r.

(ii) After some calculations we get

Pn(x+ 1)− Pn(x) =
rn
∑n

i=0 r
i
(
x+n−1
n

)(
x+n
i

) (
n−i
x

)∑n
i=0

(
x+n−1

i

)
ri
∑n

i=0

(
x+n
i

)
ri
, (1.36)

which is always positive. Hence, Pn(x+ 1)− Pn(x) ≥ 0.

(iii) For the last part we prove Pn+1 ≤ Pn using contradiction. Let us assume

Pn+1 > Pn. This is the same as saying

r
x+ n

n+ 1

n∑
i=0

ri(x+ n− 1)!
i!(x+ n− 1− i)! >

n+1∑
i=0

ri(x+ n)!

i!(x+ n− i)! . (1.37)

Next we reindex the sum on the right hand side of (1.37) by setting i = j + 1 and

we get

n∑
i=0

ri(x+ n)!

(n+ 1)i!(x+ n− 1− i)! >
1

r
+

n∑
j=0

rj(x+ n)!

(j + 1)!(x+ n− 1− j)! . (1.38)

By comparing the sums term by term we see that each term on the left hand side of
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(1.38) is smaller than the corresponding one on the right hand side, which contradicts

the assumption of Pn+1 > Pn. Hence, we must have Pn+1 ≤ Pn. �

Lemma 13 Given any natural numbers x ∈ N and n ∈ N,

n∑
i=0

n−1∑
j=0

(
x+ n− 1

i

)(
x+ n

j

)
ri+j ≥

n∑
i=0

(
x+ n− 1

n

)(
x+ n

i

)
rn+i(n− i). (1.39)

Proofs of all lemmas are provided in the Appendix C.

Lemma 14 Let Q(x) = QN(x)/QD(x), where

QN(x) =

(
n∑
i=0

(
x+ n− 1

i

)(
x+ n

n

)
rn+i +

n∑
i=0

(
x+ n− 1

n

)(
x+ n

i

)
rn+i(n− i)

)
(1.40)

and

QD(x) =

(
n∑
i=0

(
x+ n− 1

i

)
ri

n∑
i=0

(
x+ n

i

)
ri

)
. (1.41)

Then for any x, n ∈ N, and r ∈ R+, Q(x) is increasing in x.

Lemma 15 Given any natural numbers x ∈ N and n ∈ N,

n∑
i=0

n∑
j=0

(
x+ n− 1

i

)(
x+ n− 1

j

)
ri+j ≥

n∑
i=0

(
x+ n− 1

n

)(
x+ n− 1

i

)
rn+i(n+1−i).

(1.42)

Lemma 16 Given any x, n ∈ N ∪ {0}, and r ∈ R+

n∑
i=0

n∑
j=0

(
x+ n− 1

i

)(
x+ n− 1

j

)
ri+j(n+ 1− i)(n+ i− 2j) ≥ 0. (1.43)
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Proof of Proposition 3 (i)We set Ln(x) = rx(1− Pn(x)). We need to show that
ΔLn(x) = L(x+ 1)− L(x) ≥ 0. We have

ΔLn(x) = rx(Pn(x)− Pn(x+ 1)) + r(1− Pn(x+ 1)). (1.44)

Focusing on the first term in ΔLn(x) we get

x(Pn(x)− Pn(x+ 1)) =
xrn[

(
x+n−1
n

)∑n
i=0

(
x+n
i

)
ri − (x+n

n

)∑n
i=0

(
x+n−1

i

)
ri]∑n

i=0

(
x+n−1

i

)
ri
∑n

i=0

(
x+n
i

)
ri

. (1.45)

Knowing that
(
x+n
i

)
=
(
x+n−1

i

)
+
(
x+n−1
i−1
)
and after some simplification we get

x(Pn(x)− Pn(x+ 1)) = −
rn
(
x+n−1
n

)∑n
i=0

(
x+n
i

)
ri(n− i)∑n

i=0

(
x+n−1

i

)
ri
∑n

i=0

(
x+n
i

)
ri
. (1.46)

The result in (1.46) also shows that the full state probability is increasing in x. In

addition, we can see that

1− Pn(x+ 1) = 1−
(
x+n
n

)
ri∑n

i=0

(
x+n
i

)
ri
=

∑n−1
i=0

(
x+n
i

)
ri∑n

i=0

(
x+n
i

)
ri
. (1.47)

Therefore we can simplify ΔLn(x) as

ΔLn(x) = r
−∑n

i=0

(
x+n−1
n

)(
x+n
i

)
rn+i(n− i) +∑n−1

i=0

(
x+n
i

)
ri
∑n

i=0

(
x+n−1

i

)
ri∑n

i=0

(
x+n−1

i

)
ri
∑n

i=0

(
x+n
i

)
ri

.

(1.48)

Now to show ΔLn(x) is positive we need to show its numerator is always positive.

That is,

n∑
i=0

n−1∑
j=0

(
x+ n− 1

i

)(
x+ n

j

)
ri+j−

n∑
i=0

(
x+ n− 1

n

)(
x+ n

i

)
rn+i(n−i) ≥ 0. (1.49)

This is always true according to Lemma 20. Therefore, Ln(x) is increasing in x.
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(ii) In order to prove that Ln(x) is concave in x we need to show that

ΔLn(x) = 1−
∑n

i=0

(
x+n−1

i

)(
x+n
n

)
rn+i +

∑n
i=0

(
x+n−1
n

)(
x+n
i

)
rn+i(n− i)∑n

i=0

(
x+n−1

i

)
ri
∑n

i=0

(
x+n
i

)
ri

, (1.50)

is decreasing in x. But this is always true based on Lemma 21.

(iii) As r = λ/μ it is equivalent to showing that L is concave increasing in r

given μ is fixed. We know that Ln(x) = rx(1 − Pn) = rx − rxPn. Hence, we get
∂Ln(x)
∂r

= x−x∂(rPn)
∂r

and ∂2Ln(x)
∂r2

= −x∂2(rPn)
∂r2

.We first show that ∂Ln(x)
∂r

≥ 0. We have
that:

∂(rPn)

∂r
=

(
x+n−1
n

)
rn[
∑n

i=0

(
x+n−1

i

)
ri(n+ 1− i)]

[
∑n

i=0

(
x+n−1

i

)
ri]2

. (1.51)

Hence, in order to ensure that ∂Ln(x)
∂r

≥ 0 we need to show that:

[

n∑
i=0

(
x+ n− 1

i

)
ri]2 − [

(
x+ n− 1

n

) n∑
i=0

(
x+ n− 1

i

)
ri+n(n+ 1− i)] ≥ 0, (1.52)

which is true according to Lemma 23. Hence, Ln(x) is increasing in r. Now we show

that d
2Ln(x)
dr2

≤ 0. Note that showing d2Ln(x)
dr2

≤ 0 is equivalent to showing ∂2(rPn)
∂r2

≥ 0.
So we work with the latter one. From the relation (54) in the paper we have

∂(rPn)

∂r
=

(
x+n−1
n

)
rn+1[

∑n
i=0

(
x+n−1

i

)
ri−1(n+ 1− i)]

[
∑n

i=0

(
x+n−1

i

)
ri]2

. (1.53)

Furthermore,

∂2(rPn)

∂r2
=

(
x+n−1
n

)
rn−1

[
∑n

i=0

(
x+n−1

i

)
ri]3

[

n∑
i=0

n∑
j=0

(
x+ n− 1

i

)(
x+ n− 1

j

)
ri+j(n+1−i)(n+i−2j)].

(1.54)

Based on Lemma 24 we have that ∂2(rPn)
∂r2

≥ 0.Hence, Ln(x) is concave increasing in
r.
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(iv) The proof follows from the third part of Proposition 2 and Equation (6) in

the paper. �

Proof of Proposition 4 In the Erlang’s loss system with n servers the probability

of a full system is

PEn =
(xr)n

n!∑n
i=0

(xr)i

i!

=
rn

n!∑n
i=0

ri

i!xn−i
. (1.55)

While for the web publisher’s system it is

Pn =

(
x+n−1
n

)
rn∑n

i=0

(
x+n−1

i

)
ri
. (1.56)

Starting from (1.56) and simplifying yields

Pn =
rn

n!∑n
i=0

ri

i!x(x+1)(x+2)...(x+n−1−i)
≥

rn

n!∑n
i=0

ri

i!xn−i

= PEn .

Therefore Pn ≥ PEn . Moreover, from Equation (6) in the paper we have that the

average number of advertisers in the web publisher’s system is L = rx(1 − Pn).
According to Harel (1990) the same formula holds for the average number of jobs in

the Erlang’s loss system, i.e., LE = rx(1 − PEn ). As Pn ≥ PEn we have that L ≤ LE.
�
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Proof of Proposition 5 For the web publisher’s system we showed in Proposition

1 that the probability distribution of the number of the advertisers in the system is:

Pi =

(
x+i−1
i

)
ri(1 + r)n−i−1∑n

i=0

(
x+n−1

i

)
ri

, i = 0, 1, 2, ..., n− 1, (1.57)

Pn =

(
x+i−1
i

)
ri∑n

i=0

(
x+n−1

i

)
ri
.

With x = 1 and n→∞ we will get the distribution of the bulk service system with

infinite capacity. The distribution with x = 1 and finite n is:

Pi =
ri(1 + r)n−i−1∑n

i=0

(
n
i

)
ri

=
ri(1 + r)n−i−1

(1 + r)n
, for i = 0, 1, 2, ..., n− 1, (1.58)

Pn =
rn∑n

k=0

(
n
k

)
rk
=

rn

(1 + r)n
.

Using the binomial identity
∑n

k=0

(
n
k

)
rk = (1 + r)n we get

Pi =
ri(1 + r)n−i−1

(1 + r)n
=

ri

(1 + r)i+1
, i = 0, 1, 2, ..., n− 1, (1.59)

Pn =
rn∑n

k=0

(
n
k

)
rk
= (

r

1 + r
)n.

Now if we pass n → ∞ then P(n) → 0, i.e., the probability of a full system is zero.

However, Pi = ri

(1+r)i+1
, ∀i ∈ N.

For the second part, when n → ∞ we get the expected value of the number of

people in the system as

L = Ei =

∞∑
i=0

iri

(1 + r)i+1
=

r

(1 + r)2

∞∑
i=1

i

(
r

1 + r

)i−1
. (1.60)
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Now taking r
1+r

= q we obtain

Ei =
r

(1 + r)2

∞∑
i=1

iqi−1 =
r

(1 + r)2
∂

∂q

( ∞∑
i=1

qi

)
(1.61)

=
r

(1 + r)2
∂

∂q

(
q

1− q
)
=

r

(1 + r)2

(
1

1− q
)2
= r, (1.62)

which is the desired result. To obtain the variance we first need to obtain the second

moment

Ei2 =

∞∑
i=0

i2ri

(1 + r)i+1
=

∞∑
i=0

(i(i− 1) + i)ri
(1 + r)i+1

= Ei(i−1) + Ei. (1.63)

But on the other side Ei(i−1) is obtained as

Ei(i−1) =
∞∑
i=0

i(i− 1)ri
(1 + r)i+1

=
r2

(1 + r)3

∞∑
i=1

i(i− 1)qi−2 = r2

(1 + r)3
∂2

∂q2

( ∞∑
i=2

qi

)
(1.64)

=
r2

(1 + r)3
∂

∂q

(
q(2− q)
(1− q)2

)
=

r2

(1 + r)3

(
2

(1− q)3
)
= 2r2.

Hence, using (1.61), (1.63), and (1.64) we get Ei2 = 2r2 + r. Therefore V ari =

Ei2 − E2i = r2 + r. �

Proof of Proposition 6 (i) Using (7) in the paper we get

∂2R(λ)

∂λ2
= xμ(

∂2L(λ)

∂λ2
p(λ) + L

∂2p(λ)

∂λ2
+ 2

∂L(λ)

∂λ

∂p(λ)

∂λ
). (1.65)

Knowing that p(λ) is positive and concave decreasing and L is concave increasing we

have that ∂
2R(λ)

∂λ2
≤ 0.

(ii) The expression for the optimal price follows from the FONC. �
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Proof of Proposition 7 (i) By abusing the notation slightly we denote the optimal

revenue with n+ 1 slots as

R∗n+1 = λ
∗(n+ 1)(1− Pn+1(λ∗(n+ 1)))p(λ∗(n+ 1))x. (1.66)

Using optimality and part (iii) of Proposition 2 we get

R∗n+1 ≥ λ∗(n)(1− Pn+1(λ∗(n)))p(λ∗(n))x ≥ λ∗(n)(1− Pn(λ∗(n)))p(λ∗(n))x = R∗n,
(1.67)

which completes the proof for this part.

(ii) For the second part we again abuse the notation slightly and denote the

optimal revenues with x+ 1 impressions as

R∗x+1 = Lx+1(λ
∗(x+ 1))μp(λ∗(x+ 1)). (1.68)

Using optimality and parts (ii) and (iii) of Proposition 3 we get

R∗x+1 ≥ Lx+1(λ∗(x))μp(λ∗(x)) ≥ Lx(λ∗(x))μp(λ∗(x)) = R∗x, (1.69)

which completes the proof for this part.

(iii) For the third part we note that the busy probability Pn depends only on

r = λ/μ, not on λ and μ separately. By adapting our notation we denote the

optimal revenues with μ as the arrival rate of the viewer as

R∗(μ) = R(λ∗(μ), μ) = λ∗(μ)(1− Pn(λ∗(μ)/μ))p(λ∗(μ))x. (1.70)

According to Part (i) of Proposition 2, Pn is increasing in λ (and r) and thus de-
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creasing in μ. Using that fact and optimality we have for μ1 ≥ μ2 that

R∗(μ1) ≥ λ∗(μ2)(1−Pn(λ∗(μ2)/μ1))p(λ∗(μ2))x ≥ λ∗(μ2)(1−Pn(λ∗(μ2)/μ2))p(λ∗(μ2))x = R∗(μ2),
(1.71)

which completes the proof. �

Proof of Proposition 8 The proof involves using the FONC and the Implicit

Function Theorem as well as comparing terms in multiple sums.

We need to show that ∂λ
∗

∂x
≤ 0. By Implicit Function Theorem we get ∂λ

∗
∂x
as

∂λ∗

∂x
= −

∂F
∂x
∂F
∂λ∗

= −
∂
∂x
(L

′
(λ∗))p(λ∗) + ∂

∂x
(L(λ∗))p

′
(λ∗)

L′′(λ∗)p(λ∗) + L′(λ∗)p′(λ∗) + L′(λ∗)p′(λ∗) + L(λ∗)p′′(λ∗)
. (1.72)

Note that since x is discrete we are slightly abusing the Implicit Function Theorem.

However, we treat x for the remainder as discrete and, e.g., ∂
∂x
(L

′
(λ∗)) corresponds

to Δ(L
′
(λ))
∣∣
λ=λ∗ = L

′
x+1(λ

∗)−L′
x(λ

∗). Since, p(λ∗) > 0, p
′
(λ∗) < 0, p

′′
(λ∗) < 0 and

L(λ∗) > 0, L
′
(λ∗) > 0, L

′′
(λ∗) < 0, therefore the denominator is negative. Hence,

we need just to show

∂

∂x
(L

′
(λ∗))p(λ∗) +

∂

∂x
(L(λ∗))p

′
(λ∗) ≤ 0. (1.73)

Using the FONC, L
′
(λ∗)p(λ∗) + L(λ∗)p

′
(λ∗) = 0, we are are left with showing that

g(λ∗)
�
=
∂

∂x
(L(λ∗))L

′
(λ∗)− ∂

∂x
(L

′
(λ∗))L(λ∗) ≥ 0. (1.74)

Without loss of generality we set μ = 1 and thus λ∗ = r. Now we have L = rx(1−Px)
and then

∂L

∂x
= r(x+ 1)(1− Px+1)− rx(1− Px). (1.75)
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(We denote Pn with Px to emphasize the dependence on x.) Also from the proof of

Proposition 3 we have that L′ = x(1− fx) where fx is

fx
�
=

∑n
i=0

(
x+n−1

i

)(
x+n−1
n

)
rn+i(n− i+ 1)∑n

i=0

∑n
j=0

(
x+n−1

i

)(
x+n−1
j

)
ri+j

. (1.76)

Hence, we get
∂

∂x
(L

′
(λ∗)) = 1− x(fx+1 − fx)− fx+1. (1.77)

Using (1.75) and (1.77) in (2.49) and after some algebra we get

g(λ∗) = (1− Px)(fx+1 − fx)− (1− fx)(Px+1 − Px). (1.78)

Next we calculate each term in g(λ∗) by inserting the relevant functions. Using the

relation (5) in the paper as well as (1.76) in (1.78) we get

fx+1 − fx (1.79)

=

∑n
i=0

∑n
j=0

∑n
k=0

(
x+n−1

i

)(
x+n−1
j

)(
x+n
n

)(
x+n
k

)
ri+j+n+k(n− k + 1)∑n

i=0

∑n
j=0

∑n
k=0

∑n
l=0

(
x+n
i

)(
x+n
j

)(
x+n−1
k

)(
x+n−1

l

)
ri+j+k+l

(1.80)

−
∑n

i=0

∑n
j=0

∑n
k=0

(
x+n
i

)(
x+n
j

)(
x+n−1
n

)(
x+n−1
k

)
ri+j+n+k(n− k + 1)∑n

i=0

∑n
j=0

∑n
k=0

∑n
l=0

(
x+n
i

)(
x+n
j

)(
x+n−1
k

)(
x+n−1

l

)
ri+j+k+l

.

Multiplying the both sides of (1.79) and simplifying the right side gives

(1− Px)(fx+1 − fx)
=

∑n
i=0

∑n
j=0

∑n
k=0

∑n−1
l=0 (

x+n−1
i )(x+n−1j )(x+nn )(

x+n
k )(

x+n−1
l )ri+j+n+k+l(n−k+1)

∑n
i=0

∑n
j=0

∑n
k=0

∑n
l=0

∑n
h=0 (

x+n
i )(

x+n
j )(

x+n−1
k )(x+n−1l )(x+n−1h )ri+j+k+l+h

−
∑n
i=0

∑n
j=0

∑n
k=0

∑n−1
l=0 (

x+n−1
i )(x+n−1j )(x+n−1n )(x+n−1k )(x+n−1l )ri+j+n+k+l(n−k+1)

∑n
i=0

∑n
j=0

∑n
k=0

∑n
l=0

∑n
h=0 (

x+n
i )(

x+n
j )(

x+n−1
k )(x+n−1l )(x+n−1h )ri+j+k+l+h

.

(1.81)
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Using (1.76) we get

Px+1 − Px =
1
x

∑n
i=0

(
x+n
i

)(
x+n−1
n

)
ri+n(n− i)∑n

i=0

∑n
j=0

(
x+n
i

)(
x+n−1
j

)
ri+j

. (1.82)

Now we use (1.76) and (1.82) to obtain (1−fx)(Px+1−Px), the second term in g(λ∗).
After some simplification we obtain

(1− fx)(Px+1 − Px)
=

∑n
i=0

∑n
j=0

∑n
k=0

∑n
l=0 (

x+n−1
i )(x+n−1j )(x+n−1n )(x+nk )(

x+n
l )ri+j+n+k+l(

n−k
x
)

∑n
i=0

∑n
j=0

∑n
k=0

∑n
l=0

∑n
h=0 (

x+n−1
i )(x+n−1j )(x+nk )(

x+n−1
l )(x+nh )ri+j+k+l+h

−
∑n
i=0

∑n
j=0

∑n
k=0 (

x+n−1
n )(x+n−1i )(x+n−1n )(x+nj )(

x+n
k )ri+j+k+2n(n−i+1)(n−jx )

∑n
i=0

∑n
j=0

∑n
k=0

∑n
l=0

∑n
h=0 (

x+n−1
i )(x+n−1j )(x+nk )(

x+n−1
l )(x+nh )ri+j+k+l+h

.

(1.83)

Adding Equations (1.81) and (1.83) gives (notice the denominators are in fact the

same)

g(λ∗) (1.84)

=
x
∑n

i=0

∑n
j=0

∑n
k=0

∑n−1
l=0

(
x+n−1

i

)(
x+n−1
j

)(
x+n
n

)(
x+n
k

)(
x+n−1

l

)
ri+j+k+l(n− k + 1)∑n

i=0

∑n
j=0

∑n
k=0

∑n
l=0

∑n
h=0

(
x+n−1

i

)(
x+n−1
j

)(
x+n
k

)(
x+n−1

l

)(
x+n
h

)
ri+j+k+l+h

− x
∑n

i=0

∑n
j=0

∑n
k=0

∑n−1
l=0

(
x+n
i

)(
x+n
j

)(
x+n−1
n

)(
x+n−1
k

)(
x+n−1

l

)
ri+j+k+l(n− k + 1)∑n

i=0

∑n
j=0

∑n
k=0

∑n
l=0

∑n
h=0

(
x+n−1

i

)(
x+n−1
j

)(
x+n
k

)(
x+n−1

l

)(
x+n
h

)
ri+j+k+l+h

−
∑n

i=0

∑n
j=0

∑n
k=0

∑n
l=0

(
x+n−1

i

)(
x+n−1
j

)(
x+n−1
n

)(
x+n
k

)(
x+n
l

)
ri+j+k+l(n− k)∑n

i=0

∑n
j=0

∑n
k=0

∑n
l=0

∑n
h=0

(
x+n−1

i

)(
x+n−1
j

)(
x+n
k

)(
x+n−1

l

)(
x+n
h

)
ri+j+k+l+h

+

∑n
i=0

∑n
j=0

∑n
k=0

(
x+n−1
n

)(
x+n−1

i

)(
x+n−1
n

)(
x+n
j

)(
x+n
k

)
ri+j+k+n(n− i+ 1)(n− j)∑n

i=0

∑n
j=0

∑n
k=0

∑n
l=0

∑n
h=0

(
x+n−1

i

)(
x+n−1
j

)(
x+n
k

)(
x+n−1

l

)(
x+n
h

)
ri+j+k+l+h

.

To show that g(λ∗) ≥ 0 we are left with showing that its numerator is always positive
as the denominator is clearly positive. To show this we need to systematically group

the terms in the numerator in the four sums together and show that the sum of the

terms in each group are positive. We do the grouping according to the power of r.

Let us assume that the power of r is z where 0 ≤ z ≤ 4n. If g(λ∗) ≥ 0 then the
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coefficient of rz for each and every z, 0 ≤ z ≤ 4n, needs be positive. We divide the
range into four parts: 0 ≤ z < n, n ≤ z < 2n, 2n ≤ z < 3n, 3n ≤ z ≤ 4n. Here we
will illustrate the proof for 0 ≤ z < n. The other ranges are proved similarly.

Let B(x, n, z) be the coefficient of rz in the numerator for any given z. If 0 ≤
z < n and l = z − i− j − k. Then after some algebra we obtain B(x, n, z) as

B(x, n, z) =

z∑
i=0

z−i∑
j=0

z−i−j∑
k=0

Hi,j,k(x, n)Ci,j,k(x, n), (1.85)

where Hi,j,k(x, n) is

Hi,j,k(x, n)
�
=

(
x+ n− 1

i

)(
x+ n− 1

j

)(
x+ n− 1

n

)(
x+ n− 1

k

)(
x+ n− 1
z − i− j − k

)
(x+n)2 ≥ 0,

(1.86)

and Ci,j,k(x, n) is

Ci,j,k(x, n)
�
= (

n− k + 1
x+ n− k )−

x(n− k + 1)
(x+ n− i)(x+ n− j)−(

n− k
x+ n− k )(

1

x+ n− (z − i− j − k︸ ︷︷ ︸
l

)
).

(1.87)

We can see that Hi,j,k(x, n) ≥ 0. Hence, we only need to show Ci,j,k(x, n) ≥ 0. After
some simplification in (1.87) we get

Ci,j,k(x, n) ≥ ij(n− l − 1) + n2(n− i− j − l − 1) + kx(n− l)
(n+ x− i)(n+ x− j)(n+ x− k)(n+ x− k) (1.88)

+
nx(2n− 2i− 2j − l − 2) + x2(n− i− j − 1)
(n+ x− i)(n+ x− j)(n+ x− k)(n+ x− k)

≥ 0.

Having in mind that z = i + j + k + l and 0 ≤ z < n we notice that in the right

side of (1.88) each term in the numerator (and the denominator) is positive. Hence,
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Ci,j,k(x, n) ≥ 0. Given that other ranges for z hold we have that g(λ∗) ≥ 0, which

ensures ∂λ∗
∂x
≤ 0. As the price is decreasing in λ, we have proved that the optimal

price is increasing in x. �

Proof of Proposition 9 i) From the paper we know that the revenue function

can be expressed as

R = μLp(λ). (1.89)

Taking the first derivative with respect to λ and making it equal to zero yields

F =
∂R

∂λ

∣∣∣∣
λ∗
=
∂L

∂λ
p(λ) + L

∂p(λ)

∂λ

∣∣∣∣
λ∗
= 0, (1.90)

which yields
∂L

∂λ

∣∣∣∣
λ∗
= −L

∂p(λ)
∂λ

p(λ)
, (1.91)

which is always necessarily positive as ∂p(λ)
∂λ

≤ 0.

Using (1.90) we obtain

∂F (n, λ∗)
∂n

∣∣∣∣
n∗
=
∂F

∂λ∗
∂λ∗

∂n
+
∂F

∂n

∣∣∣∣
n∗
= 0, (1.92)

from which, we get

∂λ∗

∂n

∣∣∣∣
n∗
= −

∂F (n,λ∗)
∂n

∣∣∣
n∗

∂F (n,λ∗)
∂λ∗

∣∣∣
n∗

, (1.93)

which completes the proof of part (i).
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Using (1.92), (1.93), (1.90) yields

∂F

∂n∗
=

d2L

dλ∗dn∗
p+

dλ∗

dL

dp

dn∗
+
dL

dn∗
dp

dλ∗
+ L

d2p

dλ∗dn∗
≤ 0, (1.94)

which is necessarily negative because of the assumption (b). On the other side

from (1.90) we get

∂F (n, λ∗)
∂λ∗

=
d2L

dλ∗2
p+ 2

∂L

∂λ∗
∂p

∂λ∗
+ L

d2p

dλ∗2
. (1.95)

Since ∂L
∂λ∗

∂p
∂λ∗ ≤ 0, hence by assumption (c) it follows that

∂F (n, λ∗)
∂λ∗

≤ 0. (1.96)

From (1.93), (1.94), and (1.96) it follows that

∂λ∗

∂n

∣∣∣∣
n∗
≥ 0, (1.97)

which completes the proof for part (ii).

For part (iii), from the chain rule we obtain

dp

dn∗
=
∂p(n∗, λ∗)
∂n∗

=
∂p

∂λ∗
∂λ∗

∂n∗
+
∂p

∂n∗
, (1.98)

which is necessarily negative as ∂p
∂λ∗ ≤ 0. �
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B2. Filler Ads

In this section, we show that considering a charge for “filler” ads does not affect the

increasing property of the optimal price with respect to the requested impressions.

In order to see the reason for this issue, first consider the price function to depend

only on λ (demand rate) and n (number of slots). In addition, assume that displaying

each filler ad generates the revenue e > 0 per impression for the publisher, which can

be considered as a transfer price if the ad is for a different division of the company

that the publisher belongs to, or a low fee charged to a non-profit organization6.

Our task is now to show that the charge for filler ads, e, does not play a role in the

monotonicity of the optimal price.

We can modify the revenue function to include the price as follows:

R(λ, μ, x, n) = Lp(λ, n)μ+ (n− L)eμ, (1.99)

where n is the number of slots and L is the number of advertisers in the publisher’s

system (in the steady state condition). Then (n−L) is the average number of empty
slots and (n− L)eμ is the average revenue of displaying (n− L)μ filler ads per time
unit. For the next step, we apply L = rx(1 − Pn(λ, x, n)), with r = λ/μ to (1.99).
Our problem now reduces to

R(λ, μ, x, n) = λ(1− Pn(λ, μ, x))x(p(λ, n)− e) + neμ. (1.100)

Note that for a high value of e, i.e., e ≥ p(λ, n), the maximum of (1.99) with respect
to λ becomes R∗ = neμ. This is because a large e makes the first term negative,

6In the context of advertising networks, e can also be considered as the flat rate charged to the
ad network by the publisher for displaying low rate run-of-network ads.

72



which leads to λ∗ = 0. That is, the publisher denies all the arriving advertisers.

Given this, it only remains to show that e does not play a role in the maximization

problem above. In order to see that, we note that the two terms e, and neμ in (1.100)

are both independent of λ. Hence, it is easy to see that the maximization of (1.100)

becomes equivalent to the maximization of

max
λ
R̂(λ, μ, x, n) = λ(1− Pn(λ, μ, x))xp̂(λ, n), (1.101)

where the price function is defined as

p̂(λ, n) = p(λ, n)− e ≥ 0. (1.102)

We can now see that (1.101) has the same form as the basic model considered in

our paper. In addition, since p(λ, n) has the following properties p′λ(λ, n) ≤ 0,

p
′′
λ(λ, n) ≤ 0 (i.e., the necessary technical conditions for Proposition 6 to hold),

so does p̂(λ, n). As a result, the revenue function in (1.101) with the new price

function p̂(λ, n) satisfies the necessary conditions for Proposition 6. Therefore, at

the optimal level, the price function p̂∗(λ∗(x), n) would increase in x. However, it

is easy to see that in (1.101), p∗(λ∗(x), n) increases in x as well. This is because

p̂′∗x (λ
∗(x), n) ≥ 0 is the same as (p∗(λ∗(x), n)− e)′x ≥ 0. However, as e is a constant

(p∗(λ∗(x), n)− e)′x ≥ 0 reduces to p′∗x (λ∗(x), n) ≥ 0. Therefore, the result follows and
we can conclude that charging for filler ads does not change our monotonicity results.

�
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Appendix C

Lemma 17 Given x ∈ N, i ∈ N, and κ ∈ R, the following result holds:

x∑
k1=1

x∑
k2=k1

...
x∑

ki=ki−1

κ =

(
x+ i− 1

i

)
κ. (1.103)

Proof We prove the lemma with induction. For the case i = 1, as mentioned

earlier, B1 = x =
(
x+1−1
1

)
. Now let us assume that the formula holds for Bi for i = s,

i.e., Bs =
(
x+s−1
s

)
and for any x. We then need to show that it also holds for i = s+1,

i.e., Bs+1 =
(
x+s
s+1

)
. Let us condition our counting of terms on the value of ks+1. We

first assume ks+1 takes the value of 1. The number of the terms in this case will

be exactly the same as for the problem with s filled slots which is equal to
(
x+s−1
s

)
according to the induction assumption. If ks+1 = 2 the other indices can vary from 2

to x. They can not take 1 anymore because all the states with 1 are already counted

for in the case with ks+1 = 1. The number of terms in this case will be similar as

the first case except we only have x− 1 values to choose from, i.e., (x+s−2
s

)
. With a

similar reasoning for ks+1 = 3 we obtain
(
x+s−3
s

)
. Repeating the same reasoning we

can see that Bs+1 =
(
x+s−1
s

)
+
(
x+s−2
s

)
+
(
x+s−3
s

)
+ ...+

(
s
s

)
. By using Lemma 18 we

obtain that this summation is equal to
(
x+s
s+1

)
, which completes the proof. �

Lemma 18 Given k ∈ N ∩ [0, x− 1] and x ∈ N ∪ {0}, the following result holds:

x+k−1∑
i=k

(
i

k

)
=

(
x+ k

k + 1

)
. (1.104)

Proof We prove the lemma by induction. For x = 1 we have both sides equal

to 1. Let us assume that for x = s we have
∑s+k−1

i=k

(
i
k

)
=
(
s+k
k+1

)
. We then need to

show that for x = s + 1 we have
∑s+k

i=k

(
i
k

)
=
(
s+k+1
k+1

)
. We can see that

∑s+k
i=k

(
i
k

)
=
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∑s+k−1
i=k

(
i
k

)
+
(
s+k
k

)
and by using the induction assumption we have

∑s+k
i=k

(
i
k

)
=(

s+k
k+1

)
+
(
s+k
k

)
. Using the Pascal’s rule,

(
a−1
b

)
+
(
a−1
b−1
)
=
(
a
b

)
, we obtain

∑s+k
i=k

(
i
k

)
=(

s+k+1
k+1

)
, which completes the proof. �

Lemma 19 Given x ∈ N ∩ [n− 1,∞) with n ∈ N and r ∈ R+,

n−1∑
i=0

(
x+ i− 1

i

)
ri(1 + r)n−i−1 =

n−1∑
i=0

(
x+ n− 1

i

)
ri. (1.105)

Proof We prove the lemma by induction. If n = 1 then both sides are equal to

1. Let us assume the equality holds for n = k, i.e.,

D(k)
�
=

k−1∑
i=0

(
x+ i− 1

i

)
ri(1 + r)k−i−1 −

k−1∑
i=0

(
x+ k − 1

i

)
ri = 0. (1.106)

Then we need to show it also holds for n = k + 1, i.e., that

D(k + 1) =
k∑
i=0

(
x+ i− 1

i

)
ri(1 + r)k−i −

k∑
i=0

(
x+ k

i

)
ri = 0. (1.107)

We start from D(k + 1) and try to reach to D(k). We obtain

D(k+ 1) = (1 + r)

k−1∑
i=0

(
x+ i− 1

i

)
ri(1 + r)k−i−1 +

(
x+ k − 1

k

)
rk −

k∑
i=0

(
x+ k

i

)
ri.

(1.108)

Using the induction assumption we get

D(k + 1) (1.109)

= (1 + r)

k−1∑
i=0

(
x+ k − 1

i

)
ri +

(
x+ k − 1

k

)
rk −

k−1∑
i=0

(
x+ k

i

)
ri −

(
x+ k

k

)
rk

=
k−1∑
i=0

[(
x+ k − 1

i

)
−
(
x+ k

i

)]
ri −

k−1∑
i=0

(
x+ k − 1

i

)
ri+1 +

(
x+ k − 1

k

)
rk −

(
x+ k

k

)
rk,
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and in the end using Pascal’s rule twice and setting the index in the first sum to

i = j − 1, we get

D(k + 1) =

k−2∑
j=0

(
x+ k − 1

j

)
rj+1 +

(
x+ k − 1
k − 1

)
rk −

k−1∑
i=0

(
x+ k − 1

i

)
ri+1(1.110)

=

k−1∑
j=0

(
x+ k − 1

j

)
rj+1 −

k−1∑
i=0

(
x+ k − 1

i

)
ri+1

= D(k) = 0,

which completes the proof. �

Lemma 20 Given any natural numbers x ∈ N, and n ∈ N,

n∑
i=0

n−1∑
j=0

(
x+ n− 1

i

)(
x+ n

j

)
ri+j ≥

n∑
i=0

(
x+ n− 1

n

)(
x+ n

i

)
rn+i(n− i). (1.111)

Proof The Lemma can be proved using the same approach as in the proof of

Lemma 23. �

Lemma 21 Let Q(x) = QN(x)/QD(x), where

QN(x) =

(
n∑
i=0

(
x+ n− 1

i

)(
x+ n

n

)
rn+i +

n∑
i=0

(
x+ n− 1

n

)(
x+ n

i

)
rn+i(n− i)

)
(1.112)

and

QD(x) =

(
n∑
i=0

(
x+ n− 1

i

)
ri

n∑
i=0

(
x+ n

i

)
ri

)
. (1.113)

Then for any x, n ∈ N, and r ∈ R+, Q(x) is increasing in x
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Proof We need to show that Q(x + 1) ≥ Q(x). This is equivalent to showing
that

A(x, n)
�
=

n∑
i=0

n∑
j=0

n∑
k=0

(
x+ n− 1

i

)(
x+ n

j

)(
x+ n

k

)(
x+ n+ 1

n

)
ri+j+k(1.114)

+

n∑
i=0

n∑
j=0

n∑
k=0

(
x+ n− 1

i

)(
x+ n

j

)(
x+ n+ 1

k

)(
x+ n

n

)
ri+j+k(n− k)

+

n∑
i=0

n∑
j=0

n∑
k=0

(
x+ n− 1

i

)(
x+ n

j

)(
x+ n+ 1

k

)(
x+ n

n

)
ri+j+k(n− k)

−
n∑
i=0

n∑
j=0

n∑
k=0

(
x+ n

i

)(
x+ n+ 1

j

)(
x+ n− 1

k

)(
x+ n

n

)
ri+j+k

−
n∑
i=0

n∑
j=0

n∑
k=0

(
x+ n

i

)(
x+ n+ 1

j

)(
x+ n

k

)(
x+ n− 1

n

)
ri+j+k(n− k)

≥ 0.

In order to show that the inequality above holds we need to show that for any z,

0 ≤ z ≤ 3n, the coefficient of rz is positive. We consider z in three separate regions,
namely, 0 ≤ z < n, n ≤ z < 2n, and 2n ≤ z ≤ 3n. Here we prove the inequality for
0 ≤ z < n. The proof is similar for the other two regions. For any z, 0 ≤ z < n, the
coefficient for rz in A(x, n) is

z∑
i=0

n−z∑
j=0

B(x, n, i, j, z),
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where we set k = z − i− j and B(x, n, i, j, z) is obtained as

B(x, n, i, j, z) =

(
x+ n− 1

i

)(
x+ n

j

)(
x+ n− 1
z − i− j

)(
x+ n− 1

n

)
(x+ n)2(x+ n+ 1)

(1.115)

[
1

x(x+ 1)(x+ n− z + i+ j) +
(n− z + i+ j)

x(x+ n− z + i+ j)(x+ n− z + i+ j + 1)
− 1

x(x+ n− i)(x+ n− j + 1) −
(n− z + i+ j)

(x+ n− i)(x+ n+ 1− j)(x+ n− z + i+ j) ].

Since z = i+ j + k and 0 ≤ z < n we have

1

x(x+ 1)(x+ n− z + i+ j) −
1

x(x+ n− i)(x+ n− j − 1) (1.116)

=
(−i− in− jn+ n2) + (nx+ zx− 2ix− 2jx) + (z − i− j)
x(x+ 1)(x+ n− z + i+ j)(x+ n− i)(x+ n− j − 1)

≥ 0.

as all three terms in the numerator are positive. In a similar way we have

(n− z + i+ j)
x(x+ n− z + i+ j)(x+ n− z + i+ j + 1) −

(n− z + i+ j)
(x+ n− i)(x+ n+ 1− j)(x+ n− z + i+ j)

(1.117)

=
(n− z + i+ j)((n− i) + (n2 − in− jn) + (nx+ xz − 2ix− 2jx) + ij
x(x+ n− z + i+ j)(x+ n− z + i+ j + 1)(x+ n− i)(x+ n+ 1− j)

≥ 0.

Therefore, the coefficient of rz is positive, which completes the proof for 0 ≤ z < n.
�
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Lemma 22 For 0 ≤ j ≤ i ≤ n and x ≥ 1 we have

(
x+ n− 1

i

)(
x+ n− 1
n+ j − i

)
≥
(
x+ n− 1

n

)(
x+ n− 1

j

)
. (1.118)

Proof We prove the lemma by contradiction and assume
(
x+n−1

i

)(
x+n−1
n+j−i

)
<(

x+n−1
n

)(
x+n−1
j

)
. After some algebra we have

n!(x− 1)!j!(x+ n− 1− j)! < i!(x+ n− 1− i)!(n+ j − i)!(x+−1− j + i)!.

With further simplifications we get

Πik=j+1(n− i+ k) · Πik=j+1(x+ n− k) < Πik=j+1k · Πik=j+1(x+ i− k),

which is a contradiction as n ≥ i. Hence, we conclude that
(
x+n−1

i

)(
x+n−1
n+j−i

) ≥(
x+n−1
n

)(
x+n−1
j

)
. �

Lemma 23 Given any natural numbers x ∈ N and n ∈ N,

n∑
i=0

n∑
j=0

(
x+ n− 1

i

)(
x+ n− 1

j

)
ri+j ≥

n∑
i=0

(
x+ n− 1

n

)(
x+ n− 1

i

)
rn+i(n+1−i).

(1.119)

Proof We prove this lemma by selecting a few “convenient” terms from the

double sum on the left hand side of (1.119) and then showing that their sum is

always greater than the sum on the right hand side.

We focus on the double sum on the left hand side of (1.119) and notice since all

its terms are positive this double sum is greater than a sum over a few of its terms.
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We first list the terms where i+ j = 2n, then the term with i+ j = 2n− 1, etc:

n∑
i=0

n∑
j=0

(
x+ n− 1

i

)(
x+ n− 1

j

)
ri+j (1.120)

≥
(
x+ n− 1

n

)(
x+ n− 1

n

)
r2n + [

(
x+ n− 1

n

)(
x+ n− 1
n− 1

)
+

(
x+ n− 1
n− 1

)(
x+ n− 1

n

)
]r2n−1 + [

(
x+ n− 1

n

)(
x+ n− 1
n− 2

)
+

(
x+ n− 1
n− 1

)(
x+ n− 1
n− 1

)
+

(
x+ n− 1
n− 1

)(
x+ n− 1
n− 1

)
+

(
x+ n− 1
n− 2

)(
x+ n− 1

n

)
]r2n−2 + ...+ [

(
x+ n− 1

n

)(
x+ n− 1
n− 3

)
+

(
x+ n− 1
n− 1

)(
x+ n− 1
n− 2

)
+

(
x+ n− 1
n− 2

)(
x+ n− 1
n− 1

)
+

(
x+ n− 1
n− 3

)(
x+ n− 1

n

)
]r2n−3 + ...+ [

n∑
i=0

(
x+ n− 1

i

)(
x+ n− 1
n− i

)
]rn.

After some algebra we obtain

n∑
i=0

n∑
j=0

(
x+ n− 1

i

)(
x+ n− 1

j

)
ri+j (1.121)

≥ [
n∑
i=n

(
x+ n− 1

i

)(
x+ n− 1
2n− i

)
]r2n + [

n∑
i=n−1

(
x+ n− 1

i

)(
x+ n− 1
2n− 1− i

)
]r2n−1

+ [

n∑
i=n−1

(
x+ n− 1

i

)(
x+ n− 1
2n− 1− i

)
]r2n−1 + [

n∑
i=n−2

(
x+ n− 1

i

)(
x+ n− 1
2n− 2− i

)
]r2n−2

+ ...+ [

n∑
i=0

(
x+ n− 1

i

)(
x+ n− 1
n− i

)
]rn

=
n∑
j=0

[
n∑
i=j

(
x+ n− 1

i

)(
x+ n− 1
n+ j − i

)
]rj+n.

Now we subtract the term −∑n
j=0

(
x+n−1
n

)(
x+n−1
j

)
rn+i(n+ 1− j) from both sides of
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(1.121) to get

n∑
i=0

n∑
j=0

(
x+ n− 1

i

)(
x+ n− 1

j

)
ri+j −

n∑
j=0

(
x+ n− 1

n

)(
x+ n− 1

j

)
rn+i(n+ 1− j)

(1.122)

≥
n∑
j=0

rn+j[

n∑
i=j

(
x+ n− 1

i

)(
x+ n− 1
n+ j − i

)
−
(
x+ n− 1

n

)(
x+ n− 1

j

)
(n+ 1− j)].

On the other side Lemma 22 tells us that the below result is always correct:

(
x+ n− 1

i

)(
x+ n− 1
n+ j − i

)
≥
(
x+ n− 1

n

)(
x+ n− 1

j

)
for 0 ≤ j ≤ i ≤ n and x ≥ 1.

(1.123)

Replacing (1.123) in (1.122) we get

n∑
j=0

rn+j[
n∑
i=j

(
x+ n− 1

i

)(
x+ n− 1
n+ j − i

)
−
(
x+ n− 1

n

)(
x+ n− 1

j

)
(n+ 1− j)]

(1.124)

≥
n∑
j=0

rn+j[
n∑
i=j

(
x+ n− 1

n

)(
x+ n− 1

j

)
−
(
x+ n− 1

n

)(
x+ n− 1

j

)
(n+ 1− j)]

=

n∑
j=0

rn+j[

(
x+ n− 1

n

)(
x+ n− 1

j

)
(n+ 1− j)−

(
x+ n− 1

n

)(
x+ n− 1

j

)
(n+ 1− j)]

= 0.

That shows the positivity of (1.119) and completes the proof. �

Lemma 24 Given any x, n ∈ N ∪ {0}, and r ∈ R+

n∑
i=0

n∑
j=0

(
x+ n− 1

i

)(
x+ n− 1

j

)
ri+j(n+ 1− i)(n+ i− 2j) ≥ 0. (1.125)
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Proof The lemma can be proved using a similar approach as in the proof of

Lemma 23. �
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Chapter 2

Cost-Per-Click Pricing for Display

Advertising

2.1 Introduction

Display advertising (including banner ads, video ads and all non-text-based ads) is a

$25 billion business with a promising revenue rise for the coming years (McAfee et al.

2010). Web publishers that generate revenues from display advertising face several

challenging decisions. They need to decide on how many advertising slots to have

on their website, whether to hire a sales force to attract advertisers to post ads on

their website or rely on advertising networks, how many impressions to promise to

deliver, and how much to charge, etc. Pricing is one of the most challenging decisions

web publishers face, with mostly ad-hoc approaches being used. It is now generally

believed that the optimal pricing of display ads is the key to the web publishers’

revenue success (Break Media 2009). Despite the vast amount of literature on the

subject of online advertising relatively few people address the optimal pricing of
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display banner ads. Majority of work assume that ad prices are fixed and are not

affected by other decision factors.

In this chapter, we fill this gap by providing systematic approaches for pricing

of display ads when a web publisher faces major uncertainties from the demand

from advertisers requesting space on one side and the supply from viewers on the

other. This supply is usually in the form of the number of impressions or number of

clicks. We focus on the price per click (cost-per-click or CPC). This is, in particular,

one of the alternative schemes to the cost-per-impression (CPM)1 considered in the

first chapter. We show that the behavior of the two pricing schemes at the optimal

level can be considerably different. As described in the first chapter, for instance,

the optimal CPM prices decrease in the number of advertising slots, while in this

chapter, we show that the optimal CPC prices may increase with the number of slots.

More importantly, we demonstrate that in CPC contracts2 the common tendency

among practitioners to convert the prices between the two schemes using the click-

through rate3 (CTR) can be misleading. To see the importance of this result, consider

a web publisher facing the issue of determining the CPC price. In such a case,

the optimal approach for the publisher is to find the best price by considering the

CPC system with the uncertainties derived from the supply and demand directly.

Alternatively, in order to avoid the complexities involved with the direct modeling,

some web publishers tend to simply divide the CPM price by the CTR, and offer

that as the CPC price. (Of course, this is provided that they know the CPM price

1Generally, CPM price refers to the price for every 1000 impressions. However, throughout this
paper we slightly abuse the term and use the CPM price to refer to “price per every impression”.

2CPC contracts are those where the publishers promise and charge based on the number of
clicks.

3CTR is the probability that an ad is clicked. In practice, it is generally calculated by dividing
the number of viewers that click on a certain ad by the total number of visitors to the publisher’s
page.
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beforehand.) We show that this simple approach, though intuitive and broadly

used in practice, can be misleading as it may incur a significant revenue loss for the

publishers. The Appendix of this chapter demonstrates examples of two real websites

that explicitly divide the CPM price by CTR to obtain the CPC price.

Currently, available models do not provide a formal method for addressing prob-

lems where web publishers determine the CPC prices for the systems affected by the

two major uncertainties from the advertisers’ demand and the viewers’ supply. We

formulate the problem as a queueing system as a suitable approach for capturing

the dynamics of the advertisers’ uncertain demand and how it can be matched with

the dynamics of viewer’ uncertain supply4. In our queueing system formulation, we

assume that each of the slots in the publisher’s system is a serving channel. The

advertisers correspond to the customers of this queueing system requesting to be

served, and the viewers act as the servers of the system. We employ a vector-valued

state variable (with one entry per each slot), and for any given time, the pricing de-

cision depends on the advertisers’ demand, the viewers’ supply, the number of slots

in the website, and the number of clicks sold to each advertiser. This setup allows

for a fairly general dynamics for this problem.

The primary contributions of this chapter are:

1. We construct a modeling framework capturing the main trade-offs in the oper-

ation of a web publisher dealing with an ad network that comes from matching

supply with demand. We consider a general setting of multiple webpages, mul-

4It would be also possible to consider the mentioned uncertainties using alternative approaches,
for instance, stochastic dynamic programing and in particular, controlled Markov jumped processes.
However, it is easy to verify that due to the complexities involved with modeling the problem these
approaches, though seemingly more idealistic, easily fall into the trap of "the curse of dimension-
ality", which makes them become fruitless. In addition, due to practical issues, web publishers
mainly avoid dynamic pricing and strictly prefer to use static pricing, with minor time-based price
updates per each day.
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tiple types of ads (e.g. based on location and size) with different prices, and

allow ads to share an advertising slot. This model can serve as a building block

for studying more complicated operational issues of a web publisher such as

competition. (See the next chapter for a discussion on competition)

2. We derive a closed-form solution of the probability distribution of the number

of advertisers in the system. This enables us to determine the optimal price

for the web publisher to charge advertisers and analyze the publisher’s system

in detail. (See Sections 2.3 and 2.4.)

3. We derive additional theoretical results through out this chapter. An appeal-

ing result, for instance, is that the steady state probability of the number of

advertisers in the publisher’s system coincides with a version of the M/M/1/n

system. This result is rather surprising since the two systems have completely

distinctive characteristics. (See Proposition 26)

4. On the managerial side, we demonstrate that the general heuristic widely em-

ployed in practice, in which a publisher simply uses the CTR to convert the

price of one scheme to the other can be misleading, resulting in a considerable

revenue loss compared to the optimal policy. (See Section 2.5)

5. We provide further insights by showing that, unlike the CPM price considered

in the first chapter, the optimal CPC price may increase with the number of

advertising slots. This may go against our common intuition from the supply-

demand relationship: since an increase in the number of empty slots in the

system can be interpreted as an increase in the service capacity in the system.

As a result, one may expect the opposite result to hold. (See Section 2.6)

6. Our model is among the first to bridge the gap between much of the academic
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literature on pricing, which mainly focuses on deterministic pricing models,

and the much more complex online display advertising systems encountered in

practice. It also provides a significant contribution to the currently developing

management science literature on online advertising, and helps to distance from

the commonly made assumptions of the deterministic models in the marketing

literature. The closed-form results of our model can also serve as decision tools

to help the web publishers running advertising operations, for instance, by

providing an extra layer of intelligence on top of their pricing engine software.

The remainder of Chapter 2 is organized as follows: The next section provides

the relevant literature. Section 2.3 describes the model formulation. Section 2.4

discusses the web publisher’s revenue maximization problem and Section 2.6 details

the numerical study. Section 2.7 presents some extensions to the publisher’s problem

and Section 2.8 concludes and presents directions for future research.

2.2 Literature Review

There are two streams of literature related to our research. The first is the literature

on online advertising within the marketing area, which is quite extensive. Novak and

Hoffman (2000) provide an overview of advertising pricing schemes for the internet.

However, there is limited literature on analytical models for optimal pricing and

other decision making for a web publisher with an advertising operation. (For issues

faced by advertisers such as predicting audience for advertising campaigns see, e.g.,

Danaher (2007) and papers referenced therein.)

The second stream of literature is onmanagement science. The online advertising

research within this area is limited and there are few works directly related to online
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advertising pricing.

In some of the earlier work, Mangàni (2003) compares the expected revenues from

the CPC and the CPM schemes using a simple deterministic model. Unlike this

dissertation, he does not consider the uncertainties involved with the advertisers’

demands and viewers’ supplies. At the same time, Chickering and Heckerman (2003)

develop a delivery system that maximizes the CTR given inventory-management

constraints in the form of advertisement quotas. Both of these papers assume the

prices are fixed. In the first chapter, we determine the optimal price for the CPM

system. However, our model there is not applicable to the CPC system. The main

reason is that unlike the CPC system, the service rate for each advertiser remains

fixed in the CPM system. Moreover, in the CPM system the advertisers receive

service in a synchronized fashion, which does not occur in the CPC system. Lastly,

the service-time for each advertiser in the CPM system is Erlang while in the CPC

system it does not have the properties of Erlang.

There has been some recent literature on online search, the other section of the

online advertising market. Johnson et al. (2004) consider an empirical study to

examine the dynamics of online search behavior. In addition, Ghose and Yang (2009)

provide an empirical analysis of search engine advertising for the sponsored searches

on the internet. None of the results in these two papers can be extended to ours, as

they do not develop analytical models for the price decisions. Moreover, the nature of

search advertising is fundamentally different from display advertising, as it is mainly

based on using auctions that we do not consider here.

Some researchers have focused on the relevant problem of pricing of goods and

services on the internet. Brynjolfsson and Smith (2000) and Clemons et al. (2002)

conduct empirical evaluations of price dispersions and price differentiations on the
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internet. Bakos and Brynjolfsson (1999, 2000) study the optimal strategies of the

products bundling for a retailer selling products through the internet. Dewan et

al. (2000) and (2003) examine the problem of optimal product customization and

price strategy both in monopoly and in competition. Jain and Kannan (2002), and

Sandararajan (2004) analyzed the optimal pricing of information goods from the

economics and game theoretic standpoint. Although all of these papers consider a

variety of online pricing problems, none are applicable to the CPC system, as the

settings in these papers are for quite different problems.

Some authors have considered the problem of a web publisher who not only

generates revenues from advertising but also from subscriptions. Baye and Morgan

(2000) develop a simple economic model of online advertising and subscription fees.

Prasad et al. (2003) model two offerings to viewers of a website: a lower fee with

more ads and a higher fee with fewer ads. Kumar and Sethi (2008) study the problem

of dynamically determining the subscription fee and the size of advertising space on

a website. They use optimal control theory to solve the problem and obtained the

optimal subscription fee and the optimal advertisement level over time. Unlike our

thesis, all these papers are focused on capacity management problems not price

decisions, and the price is assumed to be fixed.

Scheduling of ads on a website has also recently become a popular topic. Kumar et

al. (2008) develop a model that determines how ads on a website should be scheduled

in a planning horizon to maximize revenue. They consider geometry and display

frequency as the two most important factors specifying the ads. Their problem

belongs to the class of NP-hard problems, and they develop a heuristic to solve it.

They also provided a good overview of other related papers on scheduling.

As mentioned earlier, the queuing system developed in this chapter to character-
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ize the CPC system is new. Relatively, few papers in the queuing literature consider

systems similar to the CPC system. Green (1980), Brill and Green (1984), Courcou-

betis and Reiman (1987), and Hong and Ott (1989) study systems with simultaneous

system requirements. These papers are all related to the CPM system developed in

the first chapter. Nevertheless, none of these considers the constantly changing ser-

vice rates’ phenomenon as occurs in the CPC system.

Finally, we end this section by a short review of related work in revenue manage-

ment. For a comprehensive reference of the traditional revenue management models,

we refer the reader to the book by Talluri and van Ryzin (2004) (the book does not

cover the online setting). Savin et al. (2005) consider revenue management for rental

businesses with two customer classes. Although considering a different problem, they

have assumed uncertainty in the customers demand to their model, which has some

similarity to our model. Araman and Popescu (2009) also study revenue management

for traditional media, specifically broadcasting. Their model is concerned with how

to allocate limited advertising space between up-front contracts and the so-called

scatter market (i.e., a spot market) in order to maximize profits and meet contrac-

tual commitments. Unlike our thesis, both of these papers are concerned with the

capacity decisions and price is not an issue of focus.

In the next section, we discuss about the main model.

2.3 The Model

We consider a web publisher facing uncertain demand from advertisers requesting

space to display their ads5. Advertisers require a certain number of viewers to click

5Note that the advertisers’ demand has two layers in nature: First of all, each advertiser requests
a space for his ad. For instance, this can be one of the empty slots in the publisher’s website.
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on their ads. The supply of viewers is uncertain as well as their clicking behavior.

The advertisers’ demands are sent through an ad network6. The ad network supplies

the web publisher with advertisers as long as the publisher has space available. If no

space is available the network does not assign ads to that publisher. This implies that

the publisher’s website is a loss system (see the Appendix for details on the matching

process of ad networks). Our model also applies to the setting where direct sales

channels are used with advertisers not willing to wait for space to become available,

which is common in the intense competition of web publishers for advertisers.

A web publisher often charges different prices based on the size of the ad, the

page on which the ad is posted, and the ad’s allocated position on the page; e.g.,

the leaderboard (the horizontal banner at the top) on the homepage of a news site is

more expensive than a small square at the bottom of the lifestyle page. Hence, when

a web publisher registers with an ad network it classifies similar advertising slots

that are charged the same price and registers each group with a separate tracking

code.

We assume the web publisher’s website (the system) contains J pages labeled from

1 to J . For example, for a news site these pages could correspond to the business

Secondly, after an advertiser is provided with an empty slot, he requests an uncertain number of
clicks. Hence, the advertisers’ real demand is the number of clicks but given the publisher’s space
constraint. On the other side, the viewers’ supply is also the number of clicks. As a result, both
supply and (real) demand are of the same nature.

6In many instances, the ad networks guarantee the requested number of clicks. However, some ad
networks such as Yahoo! do not explicitly guarantee the number of clicks. Instead, in its contracts,
a sales representative of Yahoo! simply converts the requested number of clicks into the number of
impressions based on his/her own estimation (no methodology or decision making tools are applied,
and this estimation is completely based on the sales person’s own estimation). If after delivering the
number of impressions, the requested number of clicks is not satisfied, the sale representative assigns
extra impressions to be delivered for the second time based on his estimation, and completely free
of charge. However, if the company sees that the number of clicks is not met after a few times of
adding extra impressions (bad ads), it ends the contract one-sided. It is quite interesting to note
that in Yahoo’s sales approach, though the company does not guarantee the number of clicks, it
delivers much more numbers of impressions and clicks than requested by advertisers completely free
of charge in order to satisfy the advertisers.
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page, travel page, etc. Each page can have several groups of ads where the same

price is charged within each group. For instance, the top of the page can display two

equally sized ads, while several small ads can be placed at the bottom (rectangles).

This leads to two ad groups. More formally, for each page j we group the ads intoM j

groups (the subsystems) of equivalent slots, where each subsystem m, 1 ≤ m ≤M j,

contains nj,m equivalent slots. We denote by λj,m the rate with which the advertisers

arrive requesting space in subsystem (j,m). An advertiser requesting a slot in group

m on page j requires his ad to be posted on the website until clicked Xj,m times by

the viewers. Xj,m is a random variable, which varies from one advertiser to the next.

We denote the expected value of Xj,m with E(Xj,m) = xj,m.

Publishers do not usually leave a slot empty; rather they place a “default” ad in

there. A default ad (or a filler ad) can often be the publisher’s own ad or a run-of-

network ad that the ad network sends to fill the place. In both cases, a default ad

generates a minimal revenue. Hence, when a revenue generating ad is sent to the

publisher the filler ad would be replaced by a proper revenue generating ad.

Let pj,m denote the price per click for a banner posted in subsystem (j,m). The

subsystems on page j are differentiated by a set of attributes, e.g., the size, the

location, and the relevance of the content offered. The viewers’ preference for these

attributes could have them consider and click on a banner from one of the subsystems.

We denote the traffic rate of viewers to a page j by μj. Next, we propose a choice

model capturing the viewers “click behavior”.

Viewers Choice Model When arriving at page j, a viewer considers ads in

each subsystem based on the attributes of the ads in the subsystem and his preference

for these attributes. We model the viewers’ preference by the coefficient vector
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V T = (1/v1, ..., 1/vl) ≥ 0 (see Anderson et al. 1992), where each component indicates
the preference weight that viewers give to each attribute (such as size and location).

Then the viewer’s choice to consider the ads in subsystem (j,m) (see, e.g., Danaher

and Mullarkey 2003; Lohtia et al. 2003 for similar applications) can be expressed by

the following Multinomial-Logit (MLN) function:

	jm =
exp(−ATjmV )

J∑
j=1

Mj∑
m=1

exp(−ATjmV )
, (2.1)

where 	jm is the probability that a viewer selects subsystem (j,m). In this

formula ATjm = (a
1
jm, ..., a

l
jm) is the attributes’ vector with a

i
jm, i = 1, ..., l, referring

to the magnitude of each attribute of ads in subsystem (j,m), such as size and

location (see, e.g., Talluri and van Ryzin (2004a, 2004b) and Vulcano and van Ryzin

(2010) for similar applications of MLN choice models to describe individuals’ choice

behavior).

We note that when vi tends to zero for a certain attribute i the choice probability

in Equation (2.1) depends only on attribute i. Alternatively, when vi is very high,

the viewers become insensitive to attribute i. In the same way, if for all attributes, vi

tends to infinity, the viewers become indifferent towards the attributes and consider

ads in all subsystems with an equal probability.

As previously mentioned, viewers arrive at the publisher’s website with rate μ per

time unit and their attentions are captured by subsystem (j,m) based on the choice

model described by Equation (2.1). We naturally assume that viewers always prefer

to consider and click on real ads compared to default (filler) ones in a subsystem.

For example, CNN.com or Financial Times frequently display their own default ads.

These ads are often not designed to be clicked on as a publishers’ major aim from
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displaying default ads is often to strengthen its own brand recognition. In addition,

if viewers choose subsystem (j,m) but it only has filler ads, we assume that they also

consider the ads in another subsystem (g, h), (the ads in subsystem g on page h) with

probability αg,hj,m, or leave the website without considering any ads with probability

1− αg,hj,m.

Rotation of ads The publisher can often serve more advertisers than there are

slots. For example, two ads could share the same slot with each ad displayed to the

viewers randomly based on pre-assigned display weights. Random weight-based ad

rotations are commonly used by ad management software such as Double-Click for

Publishers (DCP) by Google (DCP 2010). We denote sj,m as the number of sets of

ads being served in subsystem (j,m). In other words, each slot in subsystem (j,m)

is randomly rotated among sj,m ads.

The Optimization Problem The publisher’s goal is to maximize its total

revenue rate by determining the right prices to charge. The revenue rate for each

subsystem consists of the payments made by the advertisers multiplied by the “effec-

tive” demand rate for that subsystem. Each payment consists of the price per click,

denoted by pj,m, multiplied by the number of clicks requested, Xj,m. We capture the

price-sensitivity of the advertisers with the price-demand function, pj,m(λj,m), which

is assumed to be continuous and decreasing in the arrival rate of the advertisers. (In

Sections 2.7.2 and 2.7.1 we consider the price also to depend on the number of clicks.)

Even though it might not be trivial for the publisher to determine this function, we

assume it can do so with trial and error. For instance, ad networks often encourage

publishers to start by offering low prices and then gradually increase them to the

appropriate value. The process of advertisers being matched to web publishers based
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on type preference and willingness-to-pay can be modeled specifically. However, ul-

timately it will lead to a price-demand relationship. We will not model the process

in detail here but in the Appendix we provide a description, from one of the ad

networks, of the matching process.

Note that an advertiser chooses his desired subsystem in advance when registering

with the ad network. For instance, he may request a right hand side banner on the

sport page. If that subsystem is fully occupied at the publisher’s site then the

network does not offer slots in this subsystem. Given that the publisher registers

each subsystem separately with the ad network, we consider the advertisers’ demand

for each subsystem to be independent.

In addition, it is common that only a part of the advertisers’ demand per time

unit can usually be met by the publisher. This means that, the real demand rate

for each subsystem is scaled down by the probability that there are advertising slots

available. We denote the probability of having i advertisers in subsystem (j,m) by

P
j,m
i , i ∈ {0, ..., sj,mnj,m}. Note that a total of sj,mnj,m advertisers can be served with
sj,m advertisers sharing the same slot on a random display basis.

As we have a one-to-one relationship between the prices and the arrival rates of

the advertisers, we will optimize the revenue rate with respect to the arrival rates

and then determine the prices from the price-demand functions, pj,m(λj,m). The

optimization problem of the publisher of maximizing its expected revenue rate can

be formulated as follows:

max
Λ1,...,ΛJ

R(Λ1, ...,ΛJ) =
J∑
j=1

Mj∑
m=1

λj,m(1− Pj,m
sj,mnj,m

(λj,m;Xj,m, nj,m, sj,m, μj,meff ))p
j,m(λj,m)E(Xj,m)

Λj =
(
λj,1, ..., λj,M

j
)t
∈ [0,+∞)Mj

, j = 1, ..., J. (2.2)
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In this formula Pj,m
sj,mnj,m

is the probability that the subsystem (j,m) is fully oc-

cupied. Therefore, λj,m(1 − Pj,m
sj,mnj,m

(λj,m;Xj,m, nj,m, sj,m, μj,meff )) is the effective ad-

vertisers’ arrival rate at subsystem (j,m). In addition, μj,meff is the viewers’ effective

arrival rate at subsystem (j,m), which is obtained through the following proposition.

Proposition 25 The effective viewers’ arrival rate at subsystem (j,m), μj,meff , is

given by μj,meff = μ(1− Pj,m0 )Pj,mA , where Pj,mA , the probability that subsystem (j,m) is

considered, is given by

P
j,m
A = 	j,m +

J∑
g=1

Mj∑
h=1

(g,h) �=(j,m)

(
	g,hP

g,h
0 α

j,m
g,h +

αg,hj,mα
j,m
g,h P

j,m
0 P

g,h
0 (	j,m +	g,h)

1− αg,hj,mαj,mg,h Pj,m0 P
g,h
0

)
, (2.3)

where μ is the rate at which advertisers consider all subsystems and αg,hj,m (α
j,m
g,h )

is the fraction of the advertisers that faced filler ads in subsystem (j,m) (subsystem

(g, h)) who approach subsystem (g, h) (subsystem (j,m)).

The proof of this proposition and other results are provided in the Appendix.

In order to obtain the optimal CPC price, we first need to characterize Pj,m
nj,msj,m

for each subsystem (j,m) 7.

Probability Distribution Recall that advertisers’ and viewers’ arrivals to sub-

system (j,m) are Poisson 8. This property is important as it helps us to characterize

P
j,m
nj,msj,m

by modeling subsystem (j,m)’s dynamics using Markov transitional balance

equations. In our analysis, we look at each subsystem (j,m) as a queuing system

7Note that we analyze the operation of the web publisher from a steady state point of view.
Dynamic pricing would also be possible to consider. Nevertheless, according to our discussions
with practitioners, the publishers price decisions are not frequently reset, so tends to have more a
static nature, rather than a dynamic one.

8We will relax this assumtion later.
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where the slots correspond to serving channels. In this queuing system, the arriving

advertisers request to be served. Each viewer triggers part of the service to one of

the advertisers by clicking on his ad. Each advertiser completes his service when

Xj,m viewers click on his ad. For convenience, during this section we refer to the

arbitrary subsystem (j,m) as a system and drop all indices j and m. Without loss of

generality, we also set s = 1. To be able to fully characterize each of these queuing

models, we make the following assumptions.

Assumption 1 The advertisers’ demands follow a Poisson process with a station-

ary rate λ. In practice the Poisson process might be inhomogeneous, i.e., λ

can be a deterministic function of time, or it can even be a doubly stochastic

process, where λ itself is a random variable or constitutes a stochastic process.

However, it is easy to verify that the corresponding state-space and the transi-

tion equations become too complicated even for very simple special cases. As

a result, we restrict our focus only to the homogenous Poisson process (but in

Section 2.7.2 we conduct a simulation analysis for the stochastic rates and in

Section 2.7.1 for non-Poisson arrivals on both advertisers’ and viewers’ sides).

Assumption 2 The viewers visit the publisher’s system based on a Poisson process

with stationary rate μ. This assumption has been criticized in the literature as

some research supports that web traffic shows self similarity, long range depen-

dence and heavy tailed distribution, which are not properties of the Poisson

process (see, e.g., Gong et al. 2005). Nevertheless, there are several studies

that recognize that the Poisson distribution is an appropriate assumption (see,

e.g., Cao et al. 2002). We construct our main model assuming Poisson arrivals.

However, we show in Section 2.7.1 that our results provide accurate estimates

for the publisher’s model even when the viewers’ arrivals are non-Poisson.
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Assumption 3 Advertisers request the same number of clicks, i.e., E(X) = x. We

make this assumption for tractability reasons. However, in Section 2.7.2, we

consider different generalizations of this assumption and show through simula-

tions that even if the advertisers choose different numbers of clicks according to

the random variable X and are charged a price depending on X, the problem

can be well approximated by assuming that all advertisers request x = E(X)

with a single price charged.

Having Markovian arrival and service processes we can now model the system

using Markov chains. Note that even though we are ultimately interested in keeping

track of the number of advertisers in the system, in order to model the system’s

dynamics we need to keep track of the system at a more detailed level; the number

of clicks left to be delivered for each slot within the subsystem. When an advertiser

arrives, he is randomly assigned to one of the available slots with equal probability

as they are equivalent. This random ad-to-slot allocation means that we can keep

track of the dynamics of the system without distinguishing between the slots. Let

us define the state of the system and its transitions.

We formulate the system as a queuing model with the state vector

k =(k1, k2, ..., kn), 0 ≤ kh ≤ x, (2.4)

in which each component represents the number of clicks left to satisfy in one of the

slots without distinguishing among the slots. For instance, kh indicates that there is

an ad in the system, which needs to be clicked kh times more to leave the system. If

kh = 0, it indicates that the corresponding slot is empty. Alternatively, if kh = x it

indicates that an ad of a new advertiser has just been placed in the slot. Note that
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as we do not distinguish between the slots (all slots in the subsystem are equivalent)

any combination of the same components does not lead to a new state. For example,

(3, 4, 2), (4, 3, 2), and (2, 3, 4) all refer to the same state. In order to illustrate how

the state transitions work, we take the following examples:

Suppose that the system is in the state (k1, k2, ..., ki, 0, ..., 0), where the first i

components are positive and the rest is zero (empty slots). The viewers consider the

system with the effective rate μeff (see Proposition 1). We then assure that each

viewer clicks on one of the ads in the system with the probability β, or leaves the

subsystem with 1 − β. Given that a viewer clicks on one of the ads, each of the i
equivalent ads has an equal chance, 1/i, to be clicked. As a result, the state of the

system makes a transition to the new state

k′ = (k1 − 1, k2, ..., ki, 0, ..., 0)

with rate μ̂/i, where μ̂ = μeffβ. Next, consider the state of the system to be

k =(k1, k1, ..., k1︸ ︷︷ ︸
i

, ki+1, ..., kh, 0, ..., 0). We observed that in state k, i ads have the

same number of clicks left. Since we do not distinguish among the ads, the viewer

can click on one of the ads in this group with an i/h chance, while the other ads

have a 1/h chance each to be clicked. As a result, the state of the system makes a

transition to the new state

k′ = (k1 − 1, k1, ..., k1︸ ︷︷ ︸
i−1

, ki+1, ..., kh, 0, ..., 0)

with rate iμ̂/h. Lastly, consider the state of the system to be k =(k1, k2, ..., ki, 0, ..., 0︸ ︷︷ ︸
n−i

).

Now, if an advertiser arrives at the subsystem, the publisher assigns one of the empty
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slots to his ad, and the state will make a transition to (k1, k2, ..., ki, x, 0, ..., 0︸ ︷︷ ︸
n−i−1

) with

rate λ.

In order to find πk, the probability of finding the system in state k, we characterize

all possible states and transitions of the system and solve the flow balance equations.

Note that the publisher’s system is significantly different from other systems

studied so far in the queuing literature. The reason for this difference is that each

advertiser receives his service not with a fixed rate, but with a constantly changing

rate, as the probability of viewers considering an ad depends on the number of dis-

played ads in the system at any point in time. For example, if there are three ads

displayed, since the ads are equivalent, each ad has a one-third chance of absorbing a

viewer’s attention; whereas if there are five, the chance reduces to one-fifth. The con-

stantly changing service rate, which depends on the state of the system, complicates

the analysis of this system.

For the purpose of the next proposition, we index the state k’s components from

h = 1 to h = n. For example, if k =(2, 3, 5) then h(2) = 1, h(3) = 2, and h(5) = 3.

Furthermore, we define Gc(k) = {h | kh = c} to be the set of slots in the subsystem
whose number of remaining clicks are c, c = 0, 1, ..., x, where h refers to the index

of c. |Gc(k)| refers to the size of Gc(k) indicating how many slots in the system

have remaining clicks equal to c. For instance if k =(2, 2, 3, 5) then |G2(k)| = 2,

|G3(k)| = 1, and |G5(k)| = 1. The next proposition gives the closed form solution of

the steady-state probability of the number of advertisers in the system.

Proposition 26 Let ks (0 ≤ ks ≤ x) be the number of clicks left in slot s (0 ≤
s ≤ n) in the system. Define the state of the system as k =

S∑
s=1

csvcs , with vcs
�
=∑

hεGcs (k)
eTh , and Gcs(k) = {h | kh = cs} (i.e., the set of components in k with value
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cs). Furthermore, define |Gcs(k)| as the size of Gcs(k) (0 ≤ cs ≤ S) (i.e., the number
of components in k whose values are cs), where S is the number the of the groups of

slots whose remaining clicks are the same. Then the steady-state probability of the

system for state k exists, and is expressed as:

πk =

(
S∑
s=1

|Gcs(k)|)!
ΠSs=1 |Gcs(k)|!

r

(
S∑
s=1

|Gcs (k)|
)

, r =
λ

μ̂
. (2.5)

Furthermore, the steady-state probability of having i advertisers in the system is:

P(i) =
(rx)i∑n
j=0(rx)

j
, i = 0, 1, 2, ...n. (2.6)

It is surprising to see that Equation (2.6) in Proposition 26 (the probability of the

number of jobs) coincides with that of an M/M/1/n system with ρ = rx, where ρ is

often regarded as the traffic intensity. This coincidence is interesting since the two

systems have considerably different characteristics. Now, let us explore the reason

for this coincidence. we consider a similar system where the advertisers’ arrival rate

and the requested number of clicks take the values λ1 = λx, and x1 = 1 respectively.

It is easy to verify that Equation (2.6) remains unchanged. However, having λ1 =

λx and x1 = 1 suggests that the advertisers arrive at the system with rate λ1 and

request only one click. In Figure 2.1 we setup a transition diagram for this system

where the state vector is an n-tuple vector with i ones (which indicate there are i

advertisers in the system) and n − i zeros. That is, the state of the subsystem is

expressed as k = (

i︷ ︸︸ ︷
1, 1, 1..., 1, 0, ..., 0).

The state of this new system can be collapsed into a one dimensional state space

based on the number of advertisers in the system (rather than the vector k). This
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Figure 2.1: An illustration of the CPC system transition diagram while the advertisers arrival

rate and the requested numver of clicks are λ̂ = λx, and x̂ = 1 respectively. It is easy to verify
that the probability distribution of the number of the advertisers in the system does not change in

comparison to the CPC system in which the advertisers’ arrival rate is λ and the requested number
of clicks is x.

system is indeed the M/M/1/n queuing system. It is quite interesting that two

systems with very different dynamics have the same steady state probability of the

number of jobs in the system.

The other interesting observation regarding Proposition 26 is that πk does not

depend on the actual clicks remaining in each slot. This result is consistent with the

first chapter, where we show that in the CPM setting the probability distribution of

the number of ads is independent of the number of impressions remaining for each

ad.

In the next two propositions, we show some structural properties of the average

number of advertisers in the system and the busy probability through the next two

propositions. They will be useful when considering the pricing problem of the web

publisher in the next section.

Proposition 27 ∀xj,m, nj,m in the subsystem (j,m) the full state probability, Pj,mn

defined by (2.6) satisfies:

(i)
∂Pj,m

nj,m

∂rj,m
≥ 0,

(ii) Pj,m
nj,m

(xj,m + 1)− Pj,m
nj,m

(xj,m) ≥ 0,

(iii) Pj,m
nj,m+1

(xj,m) ≤ Pj,m
nj,m

(xj,m).
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This proposition is quite intuitive as one would expect the value of full state

probability at any point in time to be decreasing in the number of slots, and at any

given number of slots to increase in both the intensity rate and number of clicks.

Nevertheless, we shall show in Section 2.6 that Pj,m
nj,m

is not necessarily concave in the

number of clicks.

Proposition 28 Using Proposition (27) the average number of advertisers in the

subsystem (j,m), Lj,m
nj,m

(xj,m), and the increment ΔLj,m
nj,m

(xj,m) = Lj,m(xj,m + 1) −
Lj,m(xj,m) satisfies ∀xj,m, nj,m :

(i) ΔLj,m
nj,m

(xj,m) ≥ 0,

(ii) ΔLj,m
nj,m

(xj,m + 1) ≤ ΔLj,m
nj,m

(xj,m), rj,mxj,m > 1,

(iii) ∂Lj,m

∂rj,m
≥ 0, ∂2Lj,m

∂rj,m2
≤ 0, rj,mxj,m > 1,

(iv) Lj,m
nj,m

(xj,m) ≤ Lj,m
nj,m+1

(xj,m).

Proposition (28) (i) and (ii) imply that the average number of advertisers in the

web publisher’s system is increasing concave in the number of impressions. Further-

more, (iii) implies that the average number of advertisers in the system is increasing

concave in the intensity rate rj,m. Part (iv) also mentions that the average number

of advertisers in the web publisher’s system increases in the number of slots.

2.4 The Optimal Price

Having fully characterized the probabilistic properties of the web publisher’s oper-

ation in one of the subsystems, we now turn to the question of finding the optimal

pricing policy for the web publisher. Recall that αg,hj,m is the probability that a viewer
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who considers subsystem (j,m) and is faced with default ads, could check subsystem

(g, h) as well. For the purpose of tractability, at this stage we consider that the value

of αg,hj,m is sufficiently small to be ignored. This means that we focus on the case,

where there are no inter-flow rates between the subsystems, and hence μeff = μ.

Note that it is common in practice that there are no inter-flow between two subsys-

tems, which are located on two different pages. Generally, an average of 30% to 80%

of websites’ viewers consist of those who only visit a single page and then leave the

system (Alexa 2010). This percentage is often regarded as Bounce Rate. In addition,

a large publisher such as Yahoo! provides only one subsystem in most of its pages,

for instance games pages (McAfee 2010). Obviously, the viewers visiting the games’

page and facing default ads usually do not consider them. They rather tend to stay

in the same page to continue playing their games. As a result the interflow rate

becomes ignorable.

Recall that the advertisers’ arrivals at the subsystems are independent. The rea-

son is that advertisers choose their targeted subsystem in advance when they register

their ad with the ad network. Note that as the advertisers’ and viewers’ arrivals at

each subsystem are independent from other subsystems, the revenue maximization

problem indicated in (2.2) becomes separable in each subsystem. Therefore, we con-

veniently restrict our focus to one subsystem only.

The web publisher’s objective is to determine the optimal price to charge per

click that maximizes the revenue rate. (Without loss of generality we will ignore any

cost components.) The revenue objective function in (2.2) can be characterized by
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the following formulation:

Max
λ
R(λ) = λ(1− Pn(λ; μ̂, n, x))p(λ)x, (2.7)

s.t.

λ ∈ [0,+∞).

The following proposition ensures the existence of the optimal solution and gives

the optimal price.

Proposition 29 Let p(λ) be a nonnegative concave decreasing function defined on

the support [0,+∞). Then the revenue rate R(λ) define by (2.7) is a nonnegative
concave function of λ. Furthermore, the optimal advertisers’ arrival rate λ∗ satisfies:

∂L(λ)

∂λ

∣∣∣∣
λ∗
p(λ∗) +

∂p(λ)

∂λ

∣∣∣∣
λ∗
L(λ∗) = 0. (2.8)

The first part of Proposition (29) guarantees the concavity of the objective func-

tion defined by (2.7). Note that in order to ensure concavity we need p(λ) to be

concave. Even though this might seem a restrictive assumption it includes a linear

price which is widely applied in Economics and Management Science literature. In

addition, the numerical analysis indicates that many convex price functions give a

unimodal revenue function as well. (Other weaker conditions such as assuming con-

cave payment rate λp(λ) or monotonicity of the price elasticity −∂λ
dp

p
λ
do not seem

sufficient.) Furthermore, the second part implies that at the optimal arrival rate, the

relative change in the average number of advertisers in the system is the opposite of

the relative change in the optimal price.

The next proposition gives the insightful result that the web publisher is better
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off with having more slots, offering higher number of clicks and having more traffic

on his website. In the following proposition, we denote R(λ∗) by Rn,x(λ
∗(n, x); μ̂) to

emphasize n, x, and μ̂.

Proposition 30 The optimal revenue rate Rn,x(λ∗(n, x); μ̂) defined by 2.7 satisfies

(i) Rn,x(λ
∗(n, x); μ̂) ≤ Rn+1,x(λ∗(n+ 1, x); μ̂),

(ii) Rn,x(λ
∗(n, x); μ̂) ≤ Rn,x+1(λ∗(n, x+ 1); μ̂),

(iii) Rn,x(λ
∗(n, x); μ̂1) ≤ Rn,x(λ∗(n, x);μ2), μ̂1 ≤ μ̂2.

The following proposition states the counter-intuitive result that the optimal price

does not follow the economies-of-scale property with respect to x.

Proposition 31 If the price-demand function, p(λ) ∈ C2[0,+∞), is concave de-
creasing in the advertisers’ arrival rate, λ then:

(i) λ∗ is decreasing in x,

(ii) p(λ∗) is increasing in x.

The proposition above is quite interesting as one could expect the opposite, i.e.,

the price to be lower when more clicks are offered. In order to understand what drives

these results, we observe that there are two competing forces. First, the higher the

number of clicks the longer it takes to serve each advertiser, which means that the

web publisher does not need as many advertisers as before. Second, a higher number

of clicks makes fewer advertisers interested, i.e., λ∗ is an implicit monotone decreasing

function of x. Therefore, the web publisher is more likely to face more empty spaces

in the long-run. However, the first effect seems to always dominate, which results in

a higher price with lower demand. Practically speaking, the web publisher should
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not offer quantity discounts from an operational point of view within the advertising

network. All the same, there could be marketing reasons for offering a quantity

discount. We will explore these in Section (2.6).

2.5 The Simple Heuristic Pricing

Many web publishers that promise based on numbers of clicks tend to use a simple

heuristic approach for obtaining the CPC prices. This heuristic is based on dividing

the optimal CPM prices by the CTR9 to calculate the optimal CPC prices10. In this

section, we study the shortcomings of this heuristic by comparing its revenue with

the optimal revenue obtained by using the correct model.

Let us look at the simple heuristic in more detail. Consider a publisher’s system

that has advertisers arriving with rate λ, viewers arriving with rate μ, and each

advertiser requesting x clicks. In addition, let β be the fraction of the viewers clicking

on one of the ads in the subsystem considered before leaving. Since the publisher

does not know how to obtain the optimal CPC price (p∗cpc) directly, it charges the

scaled CPM price p∗cpc = p
∗
cpm/CTR as the publisher considers selling x clicks to be

on average equivalent to selling N = x/CTR impressions. We give the publisher

the benefit of the doubt and assume that the publisher knows to how to obtain the

optimal CPM price correctly11.

In order to examine this popular approach, we consider a CPC system at which

9The CTR is the probability that an ad is clicked. In practice, it is generally calculated by
dividing the number of viewers that have clicked on a certain ad by the total number of visitors to
the publisher’s system.
10Examples of real publishers implementing this campaign include Clickz.com. Clickz.com also

provides a special page to help users calculate the CPC price using the CPM price and the CTR.
The page is available at: http://www.clickz.com/cpa-calculator
11Obviously, using a wrong CPM price will only lead to an increased error.
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the advertisers arrive with rate λ, and the viewers arrive with rate μ = 100. The

numbers are illustrative and only for the purpose of example. We set the price

function per impression to be pcpm(λ) = 0.005 − 0.01λc. In order to determine the
CPC prices, a publisher using the CPM prices, considers a CPM system at which the

advertisers arrive with rate λ, the viewers arrive with rate μ = 100, and the number

of impressions sold to each advertiser are N = x/CTR. Then the CPC price it offers

would be pcpc(λ) = p∗cpm(λ)/CTR. The CTR used in practice is the observed value

for the ratio of the number of people clicking on a certain ad to the total number of

people visiting the publisher’s system over a certain period, for instance one week. In

other words, the CTR value that practitioners observe is the average chance that an

ad would have in order to be clicked in a stable condition. The following proposition

gives the CTR value that a publisher observes in the log-run.

Proposition 32 The observed CTR value in the long-run converges to

CTR(λ, μ, x, n, β) = β

n∑
i=1

1

i

P
cpc
i (λ, μ̂, x, n)

1− Pcpc0 (λ, μ̂, x, n)
, (2.9)

where r = λ/μ̂, μ̂ = μβ, and Pcpci is the probability of having i ads in the pub-

lisher’s system.

As can be seen in the above proposition, the value of the observed CTR depends

on advertisers’ and viewers’ effective arrival rates, the number of requested clicks,

and the number of slots in its system. Note that in this proposition, β/i refers to the

expected probability of an ad to be clicked (the actual CTR) on each visit of viewers

considering a particular subsystem when there are i ads displayed. Moreover, Pcpci /1−
P
cpc
0 refers to the proportion of the time that there are i ads in the publisher’s system

given that the system has at least one ad. Obviously, the reason for considering the
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conditional probability is that the actual CTR is non-existent for the periods that

the publisher’s system is empty.

Furthermore, Proposition 32 is quite interesting as it implies that the CTR’s

observed value, in fact, changes with the price. By changing the price, the publisher

is in fact affecting the advertisers’ arrival rate λ. This is due to the one-to-one

relationship between price and the arrival rate. Naturally, the change in the value of

λ leads to the change in the value of the observed CTR. For the purpose example,

we set β = 0.5.12

For the rest of our analysis, we take the following steps:

Step 1. First, we obtain the optimal price per impression (pcpm), and accordingly the

optimal advertisers’ arrival rate of the equivalent CPM system (λcpm). In order

to find these two values, we apply the closed form results from the first chapter

for CPM systems. In Chapter 1, we showed that the closed-form steady-state

probability of the number of advertisers in a CPM system is expressed as

P
cpm
i (λ, μ,N, s) =

(
N+i−1

i

)
ri(1 + r)s−i−1∑s

j=0

(
N+s−1

j

)
rj

, i < s,

Pcpms (λ, μ,N, s) =

(
N+s−1

s

)
rs∑s

j=0

(
N+s−1

j

)
rj
,

where N is the number of impressions being sold, s is the number of slots in the

publisher’s system, and r = λ/μ. We represent the optimal advertisers’ arrival

rate for the considered corresponding CPM system with λ∗cpm. λ
∗
cpm is obtained

12Note that we have made an extensive search for a possible appropriate candid function for β
in the marketing literature. Nevertheless, our attempt has been unsuccessful. As a result, various
potential functions for β (as functions of the number of slots, etc) were examined. However, it was
observed that regardless of the chosen function for β the obtained insights tended to be the almost
the same. Therefore, for convenience of presentation we select a fixed value for β.
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from the following maximization problem:

max
λcpm

Rcpm(λcpm) = λcpm(1− Pcpmn (λcpm, μ,N, n))pcpm(λcpm)N(2.11)

s.t.

N =

[
x

CTR(λcpm, μ, x, n, β)

]
, (2.12)

CTR(λcpm, μ, x, n, β) = β
n∑
i=1

1

i

P
cpc
i (λcpm, μ̂, x, n)

1− Pcpc0 (λcpm, μ̂, x, n)
, (2.13)

λcpm ≥ 0, (2.14)

where [.] in (2.12) refers to the integer sign.

Step 2. Next, we compute the obtained revenue of the CPC system using the corre-

sponding CPM system’s solution as follows (note that here Pcpcn is the full-state

probability for the CPC system):

Rcpc(λ
∗
cpm) = λ

∗
cpm(1− Pcpcn (λ∗cpm, μ̂, x, n))

(
pcpm(λ

∗
cpm)

CTR(λ∗cpm, μ, x, n, β)

)
x, (2.15)

where CTR is obtained using Equation (2.13). Equation (2.15) implies that the

publisher commits himself to delivering x clicks, each with the price pcpc(λ
∗
cpm) =

pcpm(λ
∗
cpm)/CTR, while the advertisers’ effective arrival rate is

λ∗cpm(1− Pcpcn (λ∗cpm, μ̂, x, n)).

Step 3. Then, we find the optimal advertisers’ arrival rate of the CPC system, λ∗cpc,
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and compute the optimal revenue using the “correct” model as follows:

R∗cpc(λ
∗
cpc) = max

λcpc
λcpc(1− Pcpcn (λcpc, μ, x, n))pcpc(λcpc)x(2.16)

s.t.

pcpc(λcpc) =
pcpm(λcpc)

CTR(λcpc, μ, x, n, β)
, (2.17)

CTR(λcpc, μ, x, n, β) = β
n∑
i=1

1

i

P
cpc
i (λ, μ̂, x, n)

1− Pcpc0 (λ, μ̂, x, n)
, (2.18)

λcpc ≥ 0. (2.19)

Sterp 4. Finally, we obtain the relative revenue gap using the following formula:

Gap =
R∗cpc(λ

∗
cpc)−Rcpc(λ∗cpm)
R∗cpc(λ

∗
cpc)

× 100 (2.20)

Table 2.1 shows the relative revenue gap between the optimal revenue obtained

by the correct pricing, and the revenue obtained by the heuristic conversion of the

CPM prices for different numbers of slots and different numbers of clicks.

c = 0 .5 Number of slots (n)
Number of Clicks (x) n = 2 n = 3 n = 4 n = 5 n = 6 n = 7 n = 8
x = 3 , 000 26% 35% 39% 41% 41% 41% 41%
x = 10 , 000 20% 25% 25% 25% 23% 22% 21%
x = 20 , 000 17% 20% 20% 18% 17% 16% 15%
x = 50 , 000 14% 15% 14% 13% 12% 11% 10%
x = 70 , 000 13% 13% 12% 11% 10% 10% 9%
x = 100 , 000 12% 12% 11% 10% 9% 9% 8%

Table 2.1: The relative performance gap
R∗cpc(λ∗cpc)−Rcpc(λ∗cpm)

R∗cpc(λ∗cpc)
× 100(%)

As can be seen from the table, the relative revenue gap between the optimal

and the heuristic policies ranges between 8% at n = 8 and x = 100, 000, and 41%

for 5 ≤ n ≤ 8 and x = 3000. For example, at x = 10, 000 the relative revenue
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gap is on average around 23%, while at x = 100, 000 the gap is approximately 10%.

Furthermore, from Table 2.1, it can be observed that the relative gap decreases in the

number of clicks. This observation is quite intuitive since with the increased number

of clicks the advertisers stay longer in the publisher’s system. As a result, the system

converges to a deterministic system in which all the ads are occupied and the CTR

converges to the fixed value CTR = β/n. Therefore, the relative gap caused by the

conversion tends to diminish as the number of clicks increases substantially. From

the table, we also observe that the relative gap is concave in the number of slots.

Obviously, as n increases the gap caused by conversion increases. Nevertheless, when

n grows too large the publisher’s system behavior converges to that of a deterministic

always empty system in which the value of CTR becomes zero.

Note that the number of clicks sold in practice often does not grow so large. For

instance, our observation from the real data of a leading Scandinavian publisher for

the past six months suggests that the number of clicks sold to advertisers are often

around x = 20, 000 or even less. The reason for selling relatively lower numbers of

clicks is mainly due to the low CTR value (often ranging between 0.1% and 0.13%

on average), which makes the advertisers stay for a very long time to complete their

requested service.

2.6 Numerical Analysis

In the previous sections, we obtained the closed-form solution for the steady state

probability distribution of the number of advertisers in the web publisher’s system.

Furthermore, we determined the conditions that ensure a unique optimal price. In

this section we derive important insights about the optimal price behavior with
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respect to factors such as the number of slots, the requested clicks for different

pricing functions.

Advertising Slots

First, we consider the sensitivity with respect to the number of advertising slots

and show that the behavior of the optimal price is non-obvious with respect to the

number of advertising slots.

In our analysis, we let the viewers’ arrival rate be μ = 1, 000. In addition, we let

the price-demand function be p(λ) = 0.5 − λc, c > 0. Figures 2.2 and 2.3 show the
relationship between the optimal price and the number of slots when the requested

numbers of clicks are x = 3, 000 and x = 10, 000 respectively. As can be seen from

the figures for low numbers of requested clicks the optimal price decreases in the

number of slots. Nevertheless, for high numbers of requested clicks, the optimal price

increases in the number of slots. The reason of this behavior is due to the trade-off

between the publisher’s serving capacity on one side and the increased service time

on the other: Adding an extra slot to the publisher’s system increases the system’s

capacity to serve more advertisers. However, as more advertisers are being served,

each advertiser has less chance to be recognized by a viewer and be clicked. As a

result, the advertisers’ average service time is increased as they need to stay longer in

the publisher’s system to complete their service. With the increased service time the

publisher can now serve fewer advertisers per time unit. As a result, the increased

service time reduces the publisher’s overall serving capacity, which may dominate

the extra service capacity added as a result of an additional slot. As can be seen in

Figure 2.2, for small numbers of requested clicks the capacity increase as a result of

an added slot is more than the capacity, which is lost as a result of the increased
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Figure 2.2: Optimal price vs slots for low number of clicks

service time. Hence, the overall serving capacity increases and the publisher can

serve more advertisers. In order to absorb more advertisers, the publisher reduces

its offered price. However, for large numbers of clicks the capacity loss due to the

increased service time dominates the direct capacity increase as a result of adding an

extra slot. Hence, the overall serving capacity decreases and the publisher can serve

fewer advertisers in the long-run. In order to respond to this change, the publisher

increases its offered price.

Numbers of Clicks

Next, we illustrate additional interesting insights about the optimal price by focusing

on its relation with the number of clicks. For this purpose, we set the number of

slots to be n = 4, and consider the rest of the setup to be the same as before. Figure

2.4 gives an idea of the relationship between the optimal price and the number of

clicks for alternative values of the number of slots, n.

114



1 2 3 4 5 6 7 8
0.32

0.33

0.34

0.35

0.36

0.37

0.38

0.39

0.4

0.41

Number of slots

O
pt

im
al

 p
ric

e

c = 1.2

c = 1

c = 0.8

Figure 2.3: Optimal price vs slots for high number of clicks
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Figure 2.4: Optimal price vs number of clicks
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As observed in Figure 2.4, the optimal price increases in the number of clicks.

The reason for this behavior is that an increased number of clicks increases the

service time. That is, each advertiser stays longer in the system to be fully served.

Therefore, the publisher can serve fewer advertisers per time unit and as a result,

the publisher increases its offered price.

We note that in general, advertisers are often attracted by quantity discounts.

Therefore, it would make sense to offer a price per click that decreases with the

number of clicks explicitly. In order to consider this issue, we set the price to depend

not only on the arrival rate of advertisers λ, but also on the number of clicks x. We

consider the following price function:

p(λ) = 0.50− λ− 10−5x. (2.21)

We continue to explore the sensitivity with respect to the number of advertising

slots. Figure 2.5 illustrates the relationship between the optimal revenue and the

number of slots. We find that the optimal revenue is not increasing anymore, but

becomes a concave function with a global maximum. Obviously, the reason for such

a behavior is because of the trade-off made between the price increase as a result of

the service capacity loss (due to the increased service time), and price decrease as a

result of the promised quantity discount.

2.7 Extensions

There are many directions the CPC model can be extended to. In this section, we

discuss two of them, leaving the rest for future research.
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Figure 2.5: Optimal revenue vs number of clicks
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2.7.1 Non-Poisson Arrivals

In Section 2.3 we assumed that the advertisers’ arrivals at the web publisher from

the ad network follow a Poisson process (Assumption 2), which might not be the

case in reality. In addition, the viewers’ arrival process might not be Poisson either

(Assumption 3). In this section, we explore other distributions for both the demand

and supply sides.

In our simulation study, we specifically examine the amount of revenue a publisher

can lose by using the base model’s solution obtained in Section 2.4 (based on Poisson

arrivals, a single number of clicks offered, and a single price charged) to determine

the price, while the clicks requested are random and both the advertisers’ and the

viewers’ arrival processes are non-Poisson.

We let the viewers’ arrival rate be μ̂ = 1. For the advertisers’ interarrival time

distributions, we consider the following distributions: Normal with mean 1/λ and

standard deviation 1/λ, Erlang-2 with mean 1/λ and standard deviation 1/
√
2λ,

Erlang-4 with mean 1/λ and standard deviation 1/2λ, uniform with the two para-

meters 0 and 2/λ, exponential with rate λ, and finally deterministic arrivals. For the

viewers’ inter arrival time distributions, we consider the same distributions with λ

replaced with μ̂ = 1. The number of slots is set to be n = 4. We choose the pricing

function to be p(λ,X) = 0.5− λ0.8 − 10−6X where the random number of requested

clicks, X, follows a Normal distribution with mean x = E(X) = 1000 and standard

deviation 500. The steps of each simulation process are as follows:

First, we obtain the advertisers’ optimal arrival rate, λ∗X,D1,D2
, when the adver-

tisers’ interarrival times follow the generic distribution D1, the viewers’ interarrival

times follow D2, and each advertiser requests a different number of clicks according
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to a random variable X. This includes simulating the publisher’s system for a range

of values of λ and then selecting λ∗X,D1,D2
, the rate that gives the highest simulated

revenue. We represent the revenue related to λ∗X,D1,D2
with RX,D1,D2

(λ∗X,D1,D2
).

Second, we compute the optimal value for λ using the closed-form solution pro-

vided in Equation (2.7) by assuming the price function to be p(λ, x) = 0.5 − λ0.8 −
10−6X, where x = E(X) = 1000. We represent this optimal value with λ∗x,Exp. If the

web publisher uses our analytical solution with the average demand x, for a system

that does not have Poisson arrivals of advertisers and viewers, and each advertiser re-

quests X clicks its “real” revenue would become RX,D1,D2
(λ∗x,Exp). See the Appendix

for a detailed schematic graph illustrating the explained steps.

Finally, we compute the revenue gap using the following formula

Gap =
RX,D1,D2

(λ∗X,D1,D2
)−RX,D1,D2

(λ∗x,Exp)

RX,D1,D2
(λ∗X,D1,D2

)
× 100(%).

Table 2.2 shows the relative revenue performance gaps for the different interarrival

time distributions considered for advertisers’ and viewers’ arrivals as well as the

random the number of requested clicks, X, that results in generating adjusted price

for each click request. We observe that the computed revenue gaps are between

0.77%− 4.25%. This suggests that the Poisson policy while considering the average
of the requested clicks tends to be an accurate estimate for the publisher’s model

even when both the viewers’ and the advertisers’ arrivals are non-Poisson and the

price is adjusted based on each advertiser’s requested clicks.
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Interarrival dist. Viewers
Advertisers Erlang-2 Erlang-4 Normal Uniform Det. Exp.
Erlang-2 2.31% 2.30% 2.15% 2.26% 2.03% 2.19%
Erlang-4 1.57% 1.80% 1.74% 1.25% 1.42% 1.53%
Normal 1.99% 3.1% 3.08% 3.18% 2.37% 2.92%
Uniform 1.39% 1.94% 1.74% 1.22% 1.55% 2.06%
Det. 0.77% 1.41% 1.16% 1.01% 0.83% 0.97%
Exp. 4.25% 3.82% 2.36% 4.03% 3.57% −

Table 2.2: The relative performance gap
RX,D1,D2 (λ

∗
X,D1,D2

)−RX,D1,D2 (λ∗x,Exp)
RX,D1,D2 (λ

∗
X,D1,D2

)
× 100(%)

2.7.2 Model’s Reliability Under More General Conditions

Our purpose from this section is to show that closed-form results obtained in the

Model’s section are relatively accurate estimates when the publisher’s system op-

erates in more general conditions than assumed in this chapter. We explore this

observation by simulating the publisher’s operation while relaxing some of the re-

strictive assumptions, which we had made primarily for tractability. We show that

the gaps between the closed-form values of L (the average number of advertisers

in the system) and Pn (the probability that the system is full) obtained from the

stylized model, and their corresponding simulated values for more general model are

often less than 1%. As a result, the solution of our stylized model is a relatively

accurate estimate for more general models. We specifically investigate the model’s

performance by relaxing the following assumptions from our stylized model:

1. Uncertain Click Requests In Section 2.3 we assumed that all advertisers re-

quest x clicks. This assumption was principally made for tractability. In this

section, we consider the number of clicks requested by each advertiser to be a

random variable X following a certain probability distribution. For example,

in many ad networks, the advertisers can choose the number of clicks from a

limited option list, i.e., x1, ...,xk. As a result, it can be thought that in the
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long-run any value xi is selected by a proportion of advertisers, namely pi,

where 0 ≤ pi ≤ 1. Similarly, in some ad networks, although there is no limit on
selecting the number of clicks, it is natural to consider that advertisers select

the number of clicks based on a continuous probability distribution.

2. Asymmetric Click Through Rates The second issue that we are concerned

with is each ad having the same chance to be clicked by the viewers entering

the publisher’s system. That is the CTR is the same for all ads. Although the

ads belong to the same subsystem, and thus it is natural to assume the ads

to have similar click through rates, it might be more realistic to assume that

due to some external factors such as the designs of ads, they may demonstrate

different levels of attractiveness. In this section we consider this issue as well.

3. Non-stationary Arrival Rates In Section 2.3 we assumed that advertisers’

Poisson arrival process is stationary. Nevertheless, in reality, the arrival rates

might change over time. In this section, we consider this issue as well.

In order to explore items (1)−(3), we let the advertisers’ arrivals follow a Poisson
process with rate Λ, where Λ itself follows the truncated Normal distribution with

mean 1 and standard deviation 0.2. That is, Λ �
= ψ1{ψ>0}, and ψ ∼ N (1, 0.2).

Furthermore, we assume that the viewers’ arrivals at the publisher’s system, follow

a Poisson distribution with rate μ = 10 per time unit. Note that as the viewers’

arrivals remain unaffected by the ad network filter, we consider the viewers’ rate

constant over time. The numbers are just illustrative and only for the purpose of our

example. We let the number of slots be n = 4. Each arriving advertiser requests X

clicks, where X follows a truncated normal distribution with mean m (the average

of the requested clicks) and standard deviation 0.5m. That is, X �
= Y 1{Y >0} clicks,
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where Y ∼ N(m, 0.5m). The high standard deviation of Y makes the number of

clicks requested by one advertiser be considerably different from the next.

On the viewers’ side, we index the slots from 1 to n. Upon arrival at the pub-

lisher’s website, a viewer observes the ads in the system, and decides to click on one

of them based on his preference. The viewer’s preference in clicking on the slots is

asymmetric. In order to consider this asymmetry in our analysis, we assume that the

viewer selects the ads with the index value I �
= [B×Nt+1], with B ∼ Beta(0.1, 0.1),

where [.] is the integer sign, and Nt is the number of ads displayed on the page upon

the viewer’s arrival. The selection of Beta distribution is arbitrary and for the pur-

pose of example13. It can be observed that the majority of time the viewer clicks on

the ads whose indices are 1, and 4, while the other two ads, if available, attract less

of his attention to click14.

For convenience, we refer to the abovementioned system as the Extended System

and denote its average and full-state probability by LES and PESn respectively. In

addition, we refer the stylized system developed in the Model’s section as the Base

System and denote its average and full-state probability by L and Pn as before. We

vary the average of the requested clicks from m = 0 to m = 1000 with steps of

50 clicks. For each value of m, we conduct a discrete event simulation with a time

horizon of T = 50, 000 time units. Note that in every time unit, on average, one

advertiser and 10 viewers arrive at the system. Therefore, each of the simulations

consists of an average 550, 000 “events” where each event is either arrival of an ad-

vertiser, or a viewer. Furthermore, note that the reason for considering LES and PESn

only is that we need these two parameters only for the web publisher’s optimization

13Note that we have considered a variety of different distributions for W . However, all of them
lead to similar result. Therefore, we decided to mention the results based on Beta distribution, which
appeared to us as a good representative example for modeling the asymmetric clicking process.
14This can be, for instance, because the slots 1 and 4 are located in a more visible positions.
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problem in (2.7) above.

We observe, the ratio
(
L− LES) /L is less than roughly 0.03% for all values of

m. In addition, the ratio
(
Pn−PESn

)
/Pn is less than about 0.2% throughout15. As a

result, the closed-form results obtained from our stylized system are almost identical

to the simulated results obtained for the extended system. Hence the base system is

a relatively accurate estimate for more complex circumstances. We also note that as

m becomes very large, the ratios turn to zero very quickly, confirming that the two

systems perform in a very similar way.

2.8 Conclusion

In this chapter, we have presented a revenue optimization model for a web publisher

selling his advertising space through an advertising network. The web publisher

generates revenue by displaying ads on its website and charges according to the CPC

pricing scheme. The web publisher operation is modeled with a queuing system,

where the arrival process corresponds to the advertisers sent by the ad network for

posting their ads, the service process corresponds to the viewers visiting the website,

with the advertising slots playing the role of servers.

A primary feature of most advertising networks is that they only deal with im-

mediate inventories. This means that when a publisher’s system is full, the network

ignores it. Instead, the network directs the advertisers to other available systems

within the advertisers’ selected category. In queuing terms this corresponds to a

system with no waiting spaces.

The queuing model developed is different from models existing in current lit-

15To conserve the space, we have moved the simulation’s results graph to the Appendix.
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erature. Despite the complexity of the model, we are able to derive a closed-form

solution of the probability distribution of the number of advertisers in the publisher’s

system for any number of banners and any number of requested clicks. This enabled

us to set up the revenue-maximizing problem of the web publisher and derive the

optimal price to charge per click, which was one of the purposes of this chapter.

We derive additional theoretical results through this chapter. An interesting

result, for instance, is that the steady state probability of the number of advertisers

in the publisher’s system coincides with that of the M/M/1/n system. This result

is rather surprising since the two systems have different dynamics.

On the managerial side, we demonstrate that the general heuristic widely em-

ployed in the CPC contracts where a publisher simply uses the CTR to convert the

price of one scheme to the other can be misleading, resulting in a considerable rev-

enue loss compared to the optimal policy. In addition, we provided further insights

by showing that, unlike the CPM price considered in the first chapter, the optimal

CPC price may increase with the number of slots. This may not seem intuitive

in comparison to our common understanding from the supply-demand relationship,

since an increase in the number of empty slots in the system can be interpreted as

an increase in the serving capacity in the system. As a result, one may expect the

opposite result to hold.

We considered the model’s robustness by considering random click requests, non-

stationary arrival rates, and asymmetry in click-through rates through an extensive

simulation study and concluded that the solutions of the simulated systems are only

minimally different from our basic model.

We believe that, in view of the model’s high flexibility in response to numerous

uncertain circumstances, the results we obtain can be naturally integrated into au-
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tomated pricing software to generate relatively optimal prices, and enhance revenue

performance of countless numbers of websites selling their slots through advertising

networks.

Our model is among the first to bridge the gap between much of the academic

literature on pricing, which mainly focuses on deterministic pricing models, and

the much more complex online display advertising systems encountered in practice.

It also provides a significant contribution to the currently developing management

science literature on online advertising, and help to distance from the commonly

made assumptions of the deterministic models in the marketing literature. The

closed-form results of our model can also serve as decision tools to help the web

publishers running advertising operations, for instance, by providing an extra layer

of intelligence on top of their pricing engine software.

In conclusion, we do not claim that our model solves all significant issues regarding

the CPC optimal pricing. However, we think that the modeling framework developed

in this chapter can provide a good basis for multiple research directions, which would

explore analytically many relevant issues in online advertising.
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Appendix A

A1. Overview of the publisher’s problem

In this section, we explain in detail how the publishers sell their slots to the adver-

tisers through ad networks16. In most ad networks the advertisers do not approach

the web publisher directly, but arrive at the system through the ad network. An ad

network is a company that connects the web publishers who want to sell their slots

(also called online inventory), with the advertisers who want to run their ads in the

relevant websites. Large publishers often sell around 60% of their inventory through

ad networks. However smaller publishers often sell their entire inventory through ad

networks. In our dissertation, we consider a common type of ad networks, known

as blind networks. A blind network is such that advertisers place their ads, and

clearly define the category of target websites for their ads (e.g., based on the size

and format of their ads (i.e., leaderboard, or small rectangle), the target websites’

contents, the average number of viewers per week visiting the target websites, and

viewers geographical locations), but do not know the exact places where their ads

are being placed. They will only know their ads will be placed in one of the target

websites within the category of their request. Contextweb, Valueclick, and Clicksor

are examples of these large blind networks.

Note that most ad networks work with immediate inventories. That is, when

a publisher’s website falls into the advertiser’s target category, and all slots are

already occupied the ad network never wastes time waiting for that publisher to

become available. Instead, it directs the ads to one of the other websites within

16The current market size of display advertising within ad networks is significant with the 2009
predicted revenue of $5.2 billion only in the United States. It is currently considered the fastest
growing sector of online advertising market, and is anticipated to reach $7.6 billion by 2012 (Think
Equity 2007).
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that category, and the selection of the target website is usually made randomly. In

several networks, if the number of the available websites in the requested category

is low or there are no available websites at the time of the advertiser’s request, the

ad network again does not wait for one of the sites to become available. Instead

it uses the available websites in the requested category from other ad networks in

partnership programs in order to increase the number of available websites. Usually

the partnerships of such ad networks are managed by other companies called ad

exchanges (i.e., ADSDAQ.com). Ad exchanges can be ad networks too, their main

difference being that in addition they have direct access to resources of several other

ad networks as well. Ad exchanges’ performances are sometimes considered similar to

stock exchanges like NASDAQ, since they provide a single virtual market for multiple

networks to sell their inventories. An example of a large ad exchange is ADSDAQ

(we can easily notice the similarity of its name to NASDAQ).

The important question here is, if the advertisers and the publishers do not di-

rectly interact with each other, is the price still set by the web publishers themselves

or do the networks automatically choose this for them? The answer is for many of

the ad exchanges like ADSDAQ it is still the publishers who determine their prices.

Nevertheless, some other networks like Clicksor have different policies. Clicksor di-

vides its publishers into the two main categories of premium and non-premium. The

premium publishers are still free to choose their own prices. However, the slot prices

for the non-premium publishers are automatically determined by the network. These

networks also do not reveal the price information to their non-premium publishers,

though they guarantee to pay at least a minimum amount of payment to these pub-

lishers. In our dissertation, we restrict our attention to the networks in which the

publishers are completely free to select their prices.

127



Publishers have ad slots
to sell. They set their ask

price (i.e. CPC)

Advertisers target content
categories that match

their desired audience’s
interest

The ad exchange
categorizes the

publishers’ website
(Sport, travel,…)

The ad exchange matches the publishers and advertisers
based on their selected categories

Each advertiser gives his
maximum price

willingness to pay per
click for their target

websites

Among the publishers whose ask price is lower than the
advertiser’s maximum price willingness one of them is

(often) selected randomly

The banner ad is displayed in the publisher's website

Figure 2.7: The general steps for transaction between advertisers and web publishers
through advertising exchages

The price (per click) determined by the publishers is called the publisher’s (or

the slot’s) ask-price. Note that, when registering the slots in the ad network, a web

publisher registers each group of equivalent slots in his website (based on such factors

as size, format, and location), with a separate, unique code and then sets a different

ask-price for each group (the size and format of each group follow the standards of

Internet Advertising Bureau (IAB)). Therefore, each publisher can register several

subsystems. However, since the advertisers clearly determine their target group when

registering in the network, each single group of slots can be viewed on its own as

an independent, separate CPC subsystem having equivalent slots that are priced the

same.

In order to match the slots’ ask price with the advertisers’ willingness to pay, the

128



advertisers are always asked to bid the maximum price they are willing to pay while

registering with the ad network. The ad network then uses these maximum bid prices

to screen the websites in the advertisers target category with ask prices lower than

the advertiser’s maximum. After this step, the network sends the advertiser’s ad to

one of these websites. The advertisers then pay the ask price to the ad network and

the network, taking a certain percentage of the publisher’s revenue as commission,

ranging from 25% to 50%, transfers the rest to the publisher’s account, usually

on a monthly basis. Figure 2.7 summarizes the necessary steps to take for online

transactions between publishers and the advertisers through the ad networks.

In addition to the pricing mechanism explained above, there are two further pric-

ing schemes that are employed; however, we do not consider these in this dissertation.

In the first scheme, there are some networks like Adtoll (Adtoll.com), in which the

publishers’ steps are almost the same, but the steps for advertisers are a little differ-

ent. Adtoll Company allows the advertisers to see the full list of websites on hand in

their selected target category, and also allows them to choose the list’s most favoured

websites. This process especially coincides with the abovementioned steps if we as-

sume the websites in the target category are equivalent in the advertiser’s point of

view, and as a result, have the same chance of being selected. The second pricing

scheme is the pure auction model, which is (partly) practiced by such networks as

Right Media, acquired by Yahoo! in 2003. In these networks, first the publisher de-

termines an ask-price for his slot in a quite similar way to the one described above.

However, if not sold with the determined price, in order to avoid unsold inventory,

the slot will be auctioned, in the same way as products are auctioned in the eBay

website. Finally, the network sells the slot to the advertiser with the highest bid.

Pure auctioning of the slots is an interesting field. Nevertheless, we leave it for future

works.
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A2. Proof of Proposition 26

We consider a Markov chain in which the state of the system is defined to be the

vector kn×1
�
= (i1, i2, ..., in) =

r∑
s=1

csvcs ∈ (N ∪ {0})n. cs ∈ N∪ {0} with s ∈ N∩ [1, r]
represents the identical number of clicks that is left in a group of slots. Further,

the vector vcs ∈ (N ∪ {0})n is defined as vcs �
=

∑
jεGcs (k)

eTj wherein the set Gcs(k) is

characterized as Gcs(k) �
= {j |〈k, ej〉 = cs} in which 〈k, ej〉 is defined as the inner

product of the two vectors k and ej, the unit jth vector. We need to identify all

the possible states of the system and obtain the transition balance equations for

every state. In view of the complexity of the transition equations, there is not any

standard technique to solve them in a single system. Thus we illustrate the results

hold by verification. The symmetric CPC system has in general 10 distinct transition

equations as follows:

i) For k =(0, ..., 0)= 0n×1 the flow balance is straightforward to obtain. k can

either go to
(
k+ xeT1

)
with rate λ or come from the sate

(
k+ eT1

)
with rate

μ. As a result the flow balance equation becomes:

rπk = πk+eT1 . (2.22)

ii) If k = ieT1 with i ∈ N ∩ [1, x − 1] then state k can either go to sate
(
k− eT1

)
with rate μ or to state

(
k+ xeT2

)
with rate λ. It also can either come from the

state
(
k+ eT1

)
with rate μ or the state

(
k+ eT2

)
with the rate λ/2. Hence the

balance equation becomes:

(1 + r)πk = πk+eT1 +
1

2
πk+eT2 .
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iii) If k = ivi, with vi =
k∑
j=1

eTj in which k ∈ N ∩ [1, n − 1] and i ∈ N ∩ [1, x − 1]
then the state k transits to state

(
k+ xeTk+1

)
with rate λ. It also transits to

state
(
k− eT1

)
with rate μ. Further, the two states

(
k+ eT1

)
and

(
k+ eTk+1

)
transit to the state k with rates μ and

(
1{i�=1}+(k+1)1{i=1}

k+1

)
μ respectively. As a

result the flow balance equation becomes:

(1 + r)πk =
1

k
πk+eT1 +

(
1{i�=1} + (k + 1)1{i=1}

k + 1

)
πk+eTk+1 . (2.23)

iv) If k = ivi with vi =
n∑
j=1

eTj and i ∈ N ∩ [1, x − 1] then k can either come
from

(
k+ eT1

)
with the rate μ/n or go to the state

(
k− eT1

)
with the rate μ.

Therefore, the flow balance equation becomes:

πk =
1

n
πk+eT1 . (2.24)

v) Define ϑ(k, z)
�
=

z∑
s=1

|Gcs(k)| for any z ∈ N ∩ [1, r]. The the state k =
r∑
s=1

csvcs

with 0 < c1 < c2 < ... < cr, cs ∈ N ∩ [1, x − 1] in which vcs =
∑

uεGcs (k)
eTu and

r∑
s=1

|Gcs(k)| ∈ N∩ [1, n− 1] goes to the state k+ xeT(ϑ(k,r)+1) with the transition
rate λ, and to one of the sates k− eT(ϑ(k,z−1)+1),for all z ∈ N ∩ [1, r], with the
transition rate |Gcz (k)|

ϑ(k,z)
μ. k also comes from either the state k+ eT(ϑ(k,r)+1) with

rate
(
1{c1>1}+(|Gc1 (k)|+1)1{c1=1}

ϑ(k,r)+1

)
μ or from one of the states k+ eT(ϑ(k,z−1)+1) with

all z ∈ N ∩ [1, r], with rate
(
1{cz+1>cz+1} + 1{z=r} + (

∣∣Gcz+1(k)∣∣+ 1)1{cz+1=cz+1}
ϑ(k, r)

)
μ.
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As a result the flow balance equation becomes:

(1 + r)πk =

(
1{c1>1} + (

∣∣Gc1 (k)∣∣+ 1)1{c1=1}
ϑ(k, r) + 1

)
πk+eT(ϑ(k,r)+1) (2.25)

+

r∑
z=1

(
1{cz+1>cz+1} + 1{z=r} + (

∣∣Gcz+1(k)∣∣+ 1)1{cz+1=cz+1}
ϑ(k, r)

)
π
k+eT

(ϑ(k,z−1)+1)
.

vi) If k =
r∑
s=1

csvcs with 0 < c1 < c2 < ... < cr, cs ∈ N ∩ [1, x − 1] and

vcs =
∑

uεGcs (k)
eTu and |G0(k)| = 0 the system goes to one the possible states

k− eT(ϑ(k,z−1)+1) with all z ∈ N ∩ [1, r] with the transition rate |Gcz (k)|
n

μ, and

comes from one the possible states k+ eT(ϑ(k,z−1)+1) with all z ∈ N ∩ [1, r] with
the transition rate

(
1{cj+1>cj+1} + 1{z=r} + (

∣∣Gcz+1(k)∣∣+ 1)1{cz+1=cz+1}
n

)
μ.

As a result the flow balance equation becomes:

πk =
r∑
z=1

(
1{cj+1>cj+1} + 1{z=r} + (

∣∣Gcz+1(k)∣∣+ 1)1{cz+1=cz+1}
n

)
π
k+eT

(ϑ(k,z−1)+1)
.

(2.26)

For example, take k =(1, 1, 2, 2, 3) then c1 = 1, c2 = 2, c3 = 3, |Gc1(k)| = 2,

|Gc2(k)| = 2, |Gc3(k)| = 1. Moreover both c2 = c1 + 1, and c3 = c2 + 1

hold. Also k+ eT(ϑ(k,0)+1) = (2, 1, 2, 2, 3), k+ eT(ϑ(k,1)+1) = (1, 1, 3, 2, 3), and

k+ eT(ϑ(k,2)+1) = (1, 1, 2, 2, 4). Therefore, the balance equation becomes: π(1,1,2,2,3) =

3
5
π(2,1,2,2,3) +

2
5
π(1,1,3,2,3) +

1
5
π(1,1,2,2,4).

vii) For k = xvx, where vx =
|Gx(k)|∑
u=1

eTu and |Gx(k)| < n with an analogous argument
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the balance equation becomes:

(1 + r)πk = rπk−xeT|Gx(k)| +
(
1{x>1} + (|Gx(k)|+ 1)1{x=1}

|Gx(k)|+ 1
)
πk+eT(|Gx(k)|+1)

.

(2.27)

viii) For k = xvx, with vx =
n∑
u=1

eTu the balance equation turns out to be:

πk = rπk−eTj . (2.28)

ix) If k = xvx +
r∑
s=1

csvcs , where vx =
|Gx(k)|∑
u=1

eTu , and vcs =
|Gx(k)|+ϑ(k,s)∑

u=|Gx(k)|+ϑ(k,s−1)
eTu ,

|G0(k)| > 0 the system goes to the state k+ xeT(|Gx(k)|+ϑ(k,r)+1) with rate λ

or to k− eT1 with rate
(

|Gx(k)|
|Gx(k)|+ϑ(k,r)

)
μ or to k− eT(|Gx(k)|+ϑ(k,z−1)+1) for z ∈

N ∩ [1, r] with the transition rate
( |Gcz+1 (k)|
|Gx(k)|+ϑ(k,r)

)
μ. Moreover, the state k

comes from either the state k+ eT(|Gx(k)|+ϑ(k,r)+1) with rate
(
1+|Gc1 (k)|1{c1=1}
|Gx(k)|+ϑ(k,r)+1

)
μ

or from k+ eT(|Gx(k)|+ϑ(k,z−1)+1), z ∈ N ∩ [1, r] with the transition rate

(
1{cz+1>cz+1}+1{z=r}+(|Gcz+1 (k)|+1)1{cz+1=cz+1}

|Gx(k)|+ϑ(k,r)

)
μ.

Hence the flow balance equation becomes:

(1 + r)πk = rπ
k−eT1

+

r∑
z=1

(
1{cz+1>cz+1}+1{z=r}+(|Gcz+1 (k)|+1)1{cz+1=cz+1}

|Gx(k)|+ϑ(k,r)

)
πk+eT(|Gx(k)|+ϑ(k,z−1)+1)

+

(
1+|Gc1 (k)|1{c1=1}
|Gx(k)|+ϑ(k,r)+1

)
πk+eT(|Gx(k)|+ϑ(k,r)+1)

.

x) If k = xvx+
r∑
s=1

csvcs , with vx =
|Gx(k)|∑
u=1

eTu , vcs =
|Gx(k)|+ϑ(k,s)∑

u=|Gx(k)|+ϑ(k,s−1)
eTu , |G0(k)| = 0
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then we obtain:

πk = rπ
k−eT1

(2.29)

+
r∑
z=1

(
1{cz+1>cz+1} + 1{z=r} + (

∣∣Gcz+1(k)∣∣+ 1)1{cz+1=cz+1}
n

)
πk+eT(|Gx(k)|+ϑ(k,z−1)+1)

.

Verifying the items 1 to 4, as well as 7 and 8 are immediate. Therefore, we need

just to verify the solution for items 5, 6, 7, 9, and 10.We only verify the solution for

number 5. The rest are verified the same way.

For number 5 we need to show

(1 + r)πk =

(
1{c1>1} + (

∣∣Gc1 (k)∣∣+ 1)1{c1=1}
ϑ(k, r) + 1

)
πk+eT(ϑ(k,r)+1) (2.30)

+

r∑
z=1

(
1{cz+1>cz+1} + 1{z=r} + (

∣∣Gcz+1(k)∣∣+ 1)1{cz+1=cz+1}
ϑ(k, r)

)
π
k+eT

(ϑ(k,z−1)+1)
.

We show this in multiple stages:

I. For the first case assume that c1 > 1 and cj+1 > cj+1 for all 1 ≤ j ≤ r. For the
left side we get (1+r)πk =

( ϑ(k,r)

|Gc1 (k)| |Gc2 (k)|...|Gcr (k)|
)
(1+r)rϑ(k,r). For convenience define

R1(k)
�
=

(
1[c1>1]+(|Gc1 (k)|+1)1{c1=1}

ϑ(k,r)+1

)
πk+eT(ϑ(k,r)+1) . Then for the first term in the right

side we get R1(k) = 1
ϑ(k,r)+1

( ϑ(k,r)+1

|Gc1 (k)| |Gc2 (k)|...|Gcr (k)|
)
rk+1. After some simplifications

we obtain

R1(k) =

(
ϑ(k, r)∣∣Gc1 (k)∣∣ ∣∣Gc2 (k)∣∣ ... ∣∣Gcr (k)∣∣

)
rk+1 =

ϑ(k, r)!
r∏
s=1

∣∣Gcs (k)∣∣!r
k+1. (2.31)
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For the second term in the right side define

R2(k, z)
�
=

(
1{cz+1>cz+1} + 1{z=r} + (

∣∣Gcz+1(k)∣∣+ 1)1{cz+1=cz+1}
ϑ(k, r)

)
π
k+eT

(ϑ(k,z−1)+1)
.

(2.32)

Considering the assumptions R2(k, z) becomes as

R2(k, z) =
1

ϑ(k, r)

(
ϑ(k, r)∣∣Gc1 (k)∣∣ ∣∣Gc2 (k)∣∣ ... (∣∣Gcz (k)∣∣− 1) 1... ∣∣Gcr (k)∣∣

)
rk, (2.33)

that after some algebraic manipulation it is reduced to

R2(k, z) =
∣∣Gcz (k)∣∣ (ϑ(k, r)− 1)!r∏

s=1

∣∣Gcs (k)∣∣! r
k. (2.34)

Hence the whole right hand side R.H.S = R1(k)+
∑r

z=1R2(k, z), becomes

R.H.S =
ϑ(k, r)!
r∏
s=1

∣∣Gcs (k)∣∣!r
k+1 +

r∑
z=1

∣∣Gcz (k)∣∣ (ϑ(k, r)− 1)!r∏
s=1

∣∣Gcs (k)∣∣! r
k. (2.35)

After some simplifications, knowing that
∑r

z=1

∣∣Gcz (k)∣∣ = ϑ(k, r) we obtain

R.H.S =
ϑ(k, r)!
r∏
s=1

∣∣Gcs (k)∣∣!r
k+1 +

ϑ(k, r)!
r∏
s=1

∣∣Gcs (k)∣∣!r
k, (2.36)

which completes the proof.

II. If c1 = 1 then we get
(
1{c1>1}+(|Gc1 (k)|+1)1{c1=1}

ϑ(k,r)+1

)
=

(
1+|Gc1 (k)|
ϑ(k,r)+1

)
. Hence for

R1(k) we get

R1(k) =

(
1 +
∣∣Gc1 (k)∣∣

ϑ(k, r) + 1

)(
ϑ(k, r) + 1(

1 +
∣∣Gc1 (k)∣∣) ∣∣Gc2 (k)∣∣ ... ∣∣Gcr (k)∣∣

)
rk+1, (2.37)
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where after some simplification of (2.37) we get

R1(k) =

(
ϑ(k, r)∣∣Gc1 (k)∣∣ ∣∣Gc2 (k)∣∣ ... ∣∣Gcr (k)∣∣

)
rk+1 =

ϑ(k, r)!
r∏
s=1

∣∣Gcs (k)∣∣!r
k+1, (2.38)

which is the same as what we obtained previously for (2.31). From this point on the

rest of steps are the same.

III. Finally, if for any arbitrary z ∈ N ∩ [1, r − 1], cz+1 = cz + 1, then
(
1{cz+1>cz+1} + 1{z=r} + (

∣∣Gcz+1(k)∣∣+ 1)1{cz+1=cz+1}
ϑ(k, r)

)
=

(
1 +
∣∣Gcz+1(k)∣∣
ϑ(k, r)

)
.

(2.39)

Thus R2(k, z) turns out to become

R2(k, z) =

(
1 +
∣∣Gcz+1(k)∣∣
ϑ(k, r)

)(
ϑ(k, r)∣∣Gc1 (k)∣∣ ∣∣Gc2 (k)∣∣ ... (∣∣Gcz (k)∣∣− 1) (∣∣∣Gcz+1 (k)∣∣∣+ 1) ... ∣∣Gcr (k)∣∣

)
rk.

(2.40)

After some manipulation (2.40) is simplified to R2(k, z) =
∣∣Gcz (k)∣∣ (ϑ(k,r)−1)!r∏

s=1
|Gcs (k)|!

rk,

which is the same result as in (2.34). As a result (2.36) always remains unchanged,

and all the steps for verification will be identical afterwards. Hence the proof becomes

complete. �
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Appendix B

B1. Comparison of The CPC System with Erlang’s Loss Sys-

tem

As previously mentioned, the queuing model developed in this chapter is new. One

of the queuing models in the literature related to ours is M/Ex/n/n, the so-called

Erlang’s loss system. As in our system, this system does not have any waiting space

and the only jobs in the system are the ones being served by one of the n servers.

The difference comes from the operation of the servers.

In Erlang loss system, the servers operate independently, while in the CPC system

the service rate of each server depends on the number of active servers in the system

at any point in time. So the servers are not independent anymore. The Erlang loss

formula, which represents the probability distribution of the number of jobs in the

system is the following:

PEi =
(rx)i

i!
n∑
j=0

(rx)j

j!

, 0 ≤ i ≤ n,

which we can compare to the distribution for the CPC system:

Pi =
(rx)i

n∑
j=0

(rx)j
, 0 ≤ i ≤ n.

If n = 1 the two formulas yield the same results as expected. Nevertheless, for

n ≥ 2, the inter-dependencies of slots in the CPC system start playing a role. The

following proposition compares the probability of the system being full for Erlang’s

loss system and the CPC system.
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Proposition 33 The probability of a fully occupied system is higher for the cost-per-

click system than for Erlang’s loss system, i.e., Pn ≥ PEn . In addition, the average

number of jobs in the cost-per-click system is more than the average number of jobs

in the Erlang’s loss system, i.e., L ≥ LE.

This proposition is quite intuitive. Since the service rate of each server in Erlang’s

loss system is more than the effective service rate in the CPC system, PEn and LE

become smaller than Pn and L respectively.

Moreover, note that one important difference between the CPC system and Erlang

loss system is that we do not need to define the n-tuple vector k to characterize

Erlang system as we had to for the CPC, since its characterization is much simpler.

This observation confirms that the CPC system indeed contributes to the queuing

literature as it cannot be characterized in a similar way to the traditional systems.

B2. Proofs of Other Propositions

Lemma 34 For any n ∈ N, and ρ ∈ R+, n− (n+ 1)ρ+ ρn+1 ≥ 0.

Proof The proof is with induction. For n = 1 the verification is immediate.

Assuming that for n = k, k − (k + 1)ρ+ ρk+1 ≥ 0. For n = k + 1 we get

k + 1− (k + 2)ρ+ ρk+2 = (k − (k + 1)ρ+ ρk+1)+ (ρ− 1) (ρk+1 − 1) . (2.1)

Due to the induction assumption, the first term is always positive. For the second

term if ρ ≥ 1 then ρk+1 ≥ 1. Hence (ρ− 1) (ρk+1 − 1) ≥ 0. Also if ρ ≤ 1 then

ρk+1 ≤ 1.As a result (ρ− 1) (ρk+1 − 1) ≥ 0 and this completes the proof. �
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Proof of Proposition 25 In order to derive μj,m, we note that there are two

streams of viewers that consider subsystem (j,m). The first stream consists of viewers

who have initially considered subsystem (j,m) (for instance, ads on the top of page

j), which we denote by W 1
j,m := μ	j,m. Out of those viewers, S1j,m := W

1
j,m(1−Pj,m0 )

can see real ads while B1j,m := W 1
j,mP

j,m
0 only see filler ads displayed on subsystem

(j,m). Thus, W 1,(g,h)
(j,m) := αg,hj,mB

1
j,m of the viewers consider ads in the subsystem (g, h)

(the subsystem h located in page g) and the rest leave the system. From those

viewers who consider the subsystem (g, h), B1,(g,h)(j,m) = W
1,(g,h)
(j,m) P

g,h
0 see only filler ads

in the subsystem (g, h). Therefore, W 2
j,m = αj,mg,hB

1,(g,h)
(j,m) of the viewers check back

subsystem (j,m) for real ads, while the rest leave the website. In short, W 2
j,m is the

fraction of the W 1
j,m viewers who had initially considered ads in subsystem (j,m),

but after experiencing a loop have come back to recheck subsystem (j,m) for the

second time1. Note that theoretically the same loop of procedures can be repeated

infinitely. However, in practice αg,hj,m or α
j,m
g,h might be near zero meaning that viewers

may leave the website quickly just after once or twice check of empty (of real ads)

subsystems. Given this, in loop κ, we find

Sκj,m = W
κ
j,m(1− Pj,m0 ), (2.2)

W κ
j,m = μ	j,m

(
αg,hj,mα

j,m
g,h P

j,m
0 P

j,h
0

)κ−1
, κ = 1, 2, ...

where Sκj,m is the fraction of the μ	j,m viewers who had initially approached the

subsystem (j,m) in the first loop and after a few checks eventually consider ads that

are posted in subsystem (j,m) in loop κ. As a result, the overall number of viewers

1Since the subsystems can belong to different pages, the publisher might post new ads in a
subsystem before a viewer re-checks it. In addition, some ads may leave the subsystems and give
their place to other ads or filler ads.
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in the first stream (in interaction with subsystem (g, h)) can be obtained as

Sj,m =

∞∑
κ=1

Sκj,m = μ	j,m(1− Pj,m0 )

∞∑
κ=1

(
αg,hj,mα

j,m
g,h P

j,m
0 P

g,h
0

)κ−1
=

μ	j,m(1− Pj,m0 )

1− αg,hj,mαj,mg,h Pj,m0 P
j,h
0

. (2.3)

The second stream of viewers includes those who had initially chosen subsystem

(g, h) but finally had to approach subsystem (j,m). Based on a similar argument it

can be shown that

S
κ,(j,m)
(g,h) = W

κ,(j,m)
(g,h) (1− Pj,m0 ), (2.4)

W
κ,(j,m)
(g,h) = μ	g,hP

g,h
0

(
αmhαhmP

j,m
0 P

j,h
0

)κ−1
, κ = 1, 2, ...

where Sκ,(j,m)(g,h) is the fraction of the μ	g,h viewers who had first selected to consider

ads in subsystem (g, h), but shifted to consider ads in subsystem (j,m) instead, in

loop κ. Thus, the total number of viewers in the second stream is

S
(j,m)
(g,h) =

∞∑
κ=1

S
κ,(j,m)
(g,h) = μ	g,hP

g,h
0 (1− Pj,m0 )

∞∑
κ=1

(
αmhαhmP

j,m
0 P

j,h
0

)κ−1
=
μ	g,hP

g,h
0 (1− Pj,m0 )

1− αmhαhmPj,m0 P
j,h
0

. (2.5)

Proof of Proposition 27

i) Showing ∂Pn
∂r

≥ 0 is the same as showing ∂Pn
∂ρ

≥ 0 in which ρ = rx. From

Proposition (26) we have Pn =
ρn(1−ρ)
1−ρn+1 . Taking the derivative of Pn with respect

to ρ, we get
∂Pn
∂ρ

=
ρn−1 (n− (n+ 1)ρ+ ρn+1)

(1− ρn+1)2 . (2.6)
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By Lemma 34 the numerator is always positive and the proof is complete.

ii) Since x is discrete, showing Pn(x+1)−Pn(x) ≥ 0 directly is a challenging task.
Instead, knowing that

Pn(x) =
(rx)n (1− rx)
1− (rx)n+1 , x ∈ N. (2.7)

We consider the alternative real-valued continuous function Qn(y) defined by

Qn(y) =
(ry)n (1− ry)
1− (ry)n+1 , y ∈ R

+. (2.8)

It is evident that for the points in which y = x ∈ N the two functions are the
same; namely, Pn(x) = Qn(x). In order to show Pn(x) is increasing in x, we

are enough to show Qn(y) is increasing in y. This is true because Qn(y) being

increasing in y also implies Qn(y + 1) − Qn(y) ≥ 0 for any y ∈ R+ including
any natural number x. Hence Qn(x + 1) − Qn(x) ≥ 0 for any y ∈ N, which
implies Pn(x+1)−Pn(x) ≥ 0. But showing Qn(y) is increasing in y is the same
as showing ∂Pn

∂ρ
≥ 0, which was proven in part (i). This completes the proof for

part (ii).

In order to show Pn(x+ 1)− Pn(x) ≥ 0 directly we have

Pn(x+ 1)− Pn(x) = (r(x+ 1))n
∑n

i=0(rx)
i − (rx)n∑n

i=0(r(x+ 1))
i

[
∑n

i=0(r(x+ 1))
i][
∑n

i=0(rx)
i]

.

After some manipulation, we get

Pn(x+ 1)− Pn(x) =
∑n

i=0 r
n+i(xi(x+ 1)n − xn(x+ 1)i)

[
∑n

i=0(r(x+ 1))
i][
∑n

i=0(rx)
i]

.
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But this is clear to see that xi(x + 1)n − xn(x + 1)i ≥ 0. This is true because
after some manipulation we get x

x+1
≤ 1 that always holds. As a result Pn(x+

1)− Pn(x) ≥ 0 and this completes the second proof for part (ii).

iii) As in part (ii) showing directly that Pn+1(x) − Pn(x) ≥ 0 is not easy. Hence

we consider the alternative continuous function as Tx(m) defined by

Tx(m) =
(rx)m (1− ry)
1− (ry)m+1 ; m ∈ R. (2.9)

We can say Tx(m) is a continuous version of Pn as when m gets natural values

the two functions become the same. As a result to show Pn is decreasing in n

we are enough to show Tx(m) is decreasing in m, namely to show
∂Tx(m)
∂m

≤ 0.
This is true because Tx(m) decreasing over any real number m automatically

implies its decreasing over any natural number, namely Tx(m)−Tx(m+1) ≥ 0
for any m ∈ N. But this is the same as saying Pn+1(x)−Pn(x) ≥ 0, x ∈ N that
we are looking for. Thus we calculate ∂Tx(m)

∂m
to get

∂Tx(m)

∂m
= −(x− 1)x

nLog(x)

(1− xn+1)2 , (2.10)

which is clearly negative, and this completes the proof of part (iii). �

Proof of Proposition 28 (i) To show L is increasing in x we have L(x+1)−L(x) =
n∑
i=0

i (Pn(x+ 1)− Pn(x)) . After some simplifications we obtain

L(x+ 1)− L(x) =

(
n∑
i=0

n∑
j=0

iri+j [(x+ 1)ixj − xi(x+ 1)j]
)

(
n∑
j=0

rj(x+ 1)j

)(
n∑
j=0

rjxj

) . (2.11)
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Hence we need to show Z (x) defined as below is positive. That is,

Z (x)
�
=

n∑
i=0

n∑
j=0

(x+ 1)i+jiri+j

((
x

x+ 1

)j
−
(

x

x+ 1

)i)
≥ 0. (2.12)

After some algebraic operations Z (x) can be represented as the sum of polyno-

mials increasing in orders of r. That is,

Z (x) =
n∑
s=0

G1(x, s)r
s +

2n∑
s=n+1

G2(x, s)r
s,

where,

G1(x, s)
�
=

s∑
i=0

(x+ 1)si

((
x

x+ 1

)s−i
−
(

x

x+ 1

)i)
, (x, s) ∈ N× Z ∩ [0, n], (2.13)

and

G2(x, s)
�
=

n∑
i=s−n

(x+ 1)si

((
x

x+ 1

)s−i
−
(

x

x+ 1

)i)
, (x, s) ∈ N× Z ∩ [n+ 1, 2n].

(2.14)

We separately show that G1(x, s) and G2(x, s) are always positive for s = 2k and

for s = 2k + 1.

i-1) For s = 2k, G1(x, s) is simplified to:

G1(x, 2k) = (x+ 1)
2kr2k

k∑
i=0

i(2k − 2i)
((

x

x+ 1

)i
−
(

x

x+ 1

)2k−i)
,

in which
(

x
x+1

)i − ( x
x+1

)2k−i ≥ 0 since 2k − i ≥ i. So the result follows. With a
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similar argument, for s = 2k,

G2(x, 2k) = (x+ 1)
2kr2k

k∑
i=2k−n

(2k − 2i)
((

x

x+ 1

)i
−
(

x

x+ 1

)n)
.

However, it can be easily verified that
(

x
x+1

)i − ( x
x+1

)n ≥ 0, which completes the
proof.

i-2) For s = 2k + 1 then simplify G1(x, s) as follows:

G1(x, 2k + 1) = (x+ 1)2k+1r2k+1
k−1∑
i=0

(2k + 1− 2i)
((

x

x+ 1

)i
−
(

x

x+ 1

)2k+1−i)

+k

((
x

x+ 1

)k
−
(

x

x+ 1

)k+1)
. (2.15)

We can easily see that
(

x
x+1

)i − ( x
x+1

)2k+1−i ≥ 0, since 2k + 1 − i ≥ 0. Also this is
clear to see that

(
x
x+1

)k − ( x
x+1

)k+1 ≥ 0 always holds. Therefore, G1(x, 2k + 1) ≥ 0.
In a similar way,

G2(x, 2k + 1) = r2k+1(x+ 1)2k+1
k−1∑

i=2k−n
i(2k + 1− 2i)

((
x

x+ 1

)i
−
(

x

x+ 1

)n)

+k

((
x

x+ 1

)k
−
(

x

x+ 1

)n)
, (2.16)

which is always positive, and the proof is complete.

In order to prove L’s convexity, we note that convexity only holds for rx > 1.

Convexity of L on a real continuum of x implies its convexity over discrete values as

well. Hence, assuming x a real variable and taking twice differentiations of L and

144



making simplifications, we get

∂2L

∂x2
=

(
n∑
i=0

n∑
j=0

n∑
k=0

ri+j+kxi+j+k−2(i2 − ij) (i+ j − 1− 2k)
)

(
n∑
j=0

(rx)j

)3 . (2.17)

However, it can be checked that for rx > 1 we have
n∑
i=0

n∑
j=0

n∑
k=0

ri+j+kxi+j+k−2(i2 −
ij) (i+ j − 1− 2k) ≤ 0. Hence the result follows.

(ii) To show L is increasing in r, we have L =
n∑
i=0

i(rx)i/
n∑
j=0

(rx)j. Taking the

derivative of L we get ∂L
∂r
=

(
n∑
i=1

n∑
j=1

(rx)i+j−1(i2 − ij)
)
/

(
n∑
j=0

(rx)j

)2
. We observe

that ∂L
∂r
≥ 0 if and only if

n∑
i=1

n∑
j=1

(rx)i+j−1(i2 − ij) ≥ 0. Using the new indexing

s = i+ j and simplifying, we get

n∑
i=1

n∑
j=1

(rx)i+j−1(i2−ij) =
n∑
s=2

(
s∑
i=1

i(2i− s)
)
(rx)s−1+

2n∑
s=n+1

(
n∑

i=s−n
i(2i− s)

)
(rx)s−1.

(2.18)

After some simplification, we obtain

n∑
i=1

n∑
j=1

(rx)i+j−1(i2−ij) =
n∑
s=2

1

6
s(s+1)(s+2)(rx)s−1+

2n∑
s=n+1

1

6
(2n−s)(2n+1−s)(2n+2−s)(rx)s−1.

(2.19)

Therefore,
n∑
i=1

n∑
j=1

(rx)i+j−1(i2 − ij) ≥ 0, and the proof is complete. The proof to
show the convexity of L in r has a similar procedure to part (i) and is omitted. �

Lemma 35 For any n ∈ N and r ∈ R, ∑n
i=0

∑n
j=0(rx)

i(n− i+ 1)(n+ i− 2j) ≥ 0.
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Proof Define the function F (x)
�
=
∑n

i=0

∑n
j=0(rx)

i(n− i+1)(n+ i− 2j). After
some manipulation F (x) is simplified to F (x) =

∑n
i=0(rx)

i[
∑n

j=0(n − i + 1)(n +
i − 2j)]. On the other side the sum ∑n

j=0(n − i + 1)(n + i − 2j) is reduced to:∑n
j=0(n− i+ 1)(n+ i− 2j) = i(n+ 1)(n+ 1− i).The result follows by replacing the

reduced sum in F (x). �

Proof of Proposition 29 i) The first derivative of R(λ) with respect to λ is

∂R(λ)

∂λ
=
∂Γ (λ)

∂λ
p(λ) +

∂p(λ)

∂λ
Γ (λ). (2.20)

Thus the second derivative becomes

∂2R(λ)

∂λ2
=
∂2Γ (λ)

∂λ2
p(λ) + 2

∂Γ (λ)

∂λ

∂p(λ)

∂λ
+
∂2p(λ)

∂λ2
Γ (λ). (2.21)

To show ∂2R(λ)

∂λ2
≤ 0, Assuming ∂p(λ)

∂λ
≤ 0 and ∂2p(λ)

∂λ2
≤ 0, we need to show Γ (λ) is

increasing concave, namely ∂Γ (λ)
∂λ

≥ 0 and ∂2Γ (λ)

∂λ2
≤ 0. By definition,

Γ (λ) = λx(1− Pn(λ)) = μrx(1− Pn(λ)). (2.22)

In order to show the result, without loss of generality, we take the derivative of

Γ (λ) with respect to r for a given μ. For the first derivative, we get

∂Γ (λ)

∂r
= μx− μ∂ (rPn(λ))

∂r
. (2.23)

Thus in order to show Γ is increasing, we need just to show rPn(λ) is increasing
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in r (for a given μ). We observe that

rPn(λ) =
ri+1xi∑n
i=0(rx)

i
. (2.24)

Taking the derivative of (2.24) and simplifying gives

∂ (rPn(λ))

∂r
=

(
n∑
i=0

(n+ 1− i)(rx)i+n
)
/

(
n∑
i=0

(rx)i

)2
≥ 0. (2.25)

Thus Γ (λ) is increasing in r. Now taking the second derivative of Γ (λ) with

respect to r gives
∂2Γ (λ)

∂r2
= −μ∂

2 (rPn(λ))

∂r2
. (2.26)

Therefore, Γ (λ) is concave if and only if ∂
2(rPn(λ))
∂r2

≥ 0. To show this we take the
derivative of (2.25) to get

∂2 (rPn(λ))

∂r2
=

(
n∑
i=0

n∑
j=0

(rx)i+n−1(n− i+ 1)(n+ i− 2j)
)
/

(
n∑
i=0

(rx)i

)3
. (2.27)

However, based on the lemma 35,
∑n

i=0

∑n
j=0(rx)

i+n−1(n− i+1)(n+ i− 2j) ≥ 0.
Therefore, ∂

2(rPn(λ))
∂r2

≥ 0 and the result follows.

(ii) The proof of part (ii) is immediate from (2.20). �

Lemma 36 Let Γ (λ) = λx(1 − Pn(λ)), x ∈ N, n ∈ N, λ ∈ R+. Then we have
Γx(λ) ≤ Γx+1(λ).
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Proof In order to show Γx(λ) ≤ Γx+1(λ) we write (Γx+1(λ)− Γx(λ)) as

(
Γx+1(λ)− Γx(λ)

μ

)
= rx[Pn(x)− Pn(x+ 1)] + r[1− Pn(x+ 1)] (2.28)

Furthermore, from (2.7) , for (Pn(x)− Pn(x+ 1)) we get

rx[Pn(x)− Pn(x+ 1)] = −rx (∑n
i=0 r

n+i(xi(x+ 1)n − xn(x+ 1)i))
((
∑n

i=0(r(x+ 1))
i) (
∑n

i=0(rx)
i))

. (2.29)

Likewise, for (1− Pn(x+ 1)) we obtain

r[1− Pn(x+ 1)] =
(
r
n−1∑
i=0

(r(x+ 1))i

)
/

(
n∑
i=0

(r(x+ 1))i

)
. (2.30)

Replacing (2.29) and (2.30) in (2.28) and simplifying gives

(
Γx+1(λ)− Γx(λ)

μ

)
=
−rx∑n

i=0 r
n+i(xi(x+ 1)n − xn(x+ 1)i) + r[∑n−1

i=0 (r(x+ 1))
i][
∑n

i=0(r(x+ 1))
i]

[
∑n

i=0(r(x+ 1))
i][
∑n

i=0(rx)
i]

.

(2.31)

The first sum in the numerator of (2.31) can be simplified as

−
n∑
i=0

rn+i+1(xi+1(x+1)n−xn+1(x+1)i) = −
n−1∑
i=0

rn+i+1(xi+1(x+1)n−xn+1(x+1)i).
(2.32)

Likewise, after some algebraic operations, the second sum in the numerator of (2.31)

becomes

r[

n−1∑
i=0

(r(x+1))i][

n∑
i=0

(r(x+1))i] =

n−1∑
i=1

ri
i∑
j=0

xj(1+x)i−j−1+
2n∑

i=n+1

ri
n−1∑

j=i−1−n
xi−j−1(1+x)j,

(2.33)
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where some manipulations on (2.33) yields

n−1∑
i=1

ri
i∑
j=0

xj(1+x)i−j−1+
n−1∑
i=0

ri+n+1
n−1∑
j=i

xi+n−j(1+x)j ≥
n−1∑
i=0

ri+n+1
n−1∑
j=i

xi+n−j(1+x)j.

(2.34)

However, it is straightforward to see that
(∑n−1

j=i x
i+n−j(1 + x)j

)
is simplified to

n−1∑
j=i

xi+n−j(1 + x)j = xi+1(x+ 1)n − xn+1(x+ 1)i. (2.35)

Replacing (2.32), (2.33), (2.34), and (2.35) in (2.31) we obtain

(
Γx+1(λ)− Γx(λ)

μ

)
(2.36)

≥ −∑n−1
i=0 r

n+i+1(xi+1(x+ 1)n − xn+1(x+ 1)i) +∑n−1
i=0 r

i+n+1(xi+1(x+ 1)n − xn+1(x+ 1)i)
[
∑n

i=0(r(x+ 1))
i][
∑n

i=0(rx)
i]

= 0.

Therefore, Γx+1(λ) ≥ Γx(λ) and the proof is complete. �

Proof of Proposition 30 (i) Adapting our notation, we denote the optimal rev-

enue with n+ 1 slots as

R∗n+1 = Rn+1(λ
∗(n+ 1)) = λ∗(n+ 1)(1− Pn+1(λ∗(n+ 1)))p(λ∗(n+ 1))x. (2.37)

Using optimality and part (iii) of Proposition 27 we get

R∗n+1 ≥ λ∗(n)(1− Pn+1(λ∗(n)))p(λ∗(n))x ≥ λ∗(n)(1− Pn(λ∗(n)))p(λ∗(n))x = R∗n,
(2.38)

which completes the proof for this part.

(ii) For the second part we again adapt our notation and denote the optimal
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revenue with x+ 1 clicks as

R∗x+1 = Rx+1(λ
∗(x+ 1)) = Γx+1(λ

∗(x+ 1))μp(λ∗(x+ 1)). (2.39)

Using optimality and Lemma 36 we have

R∗x+1 ≥ Γx+1(λ∗(x))μp(λ∗(x)) ≥ Γx(λ∗(x))μp(λ∗(x)) = R∗x, (2.40)

which completes the second part of the proof.

(iii) For the third part we note that the busy probability Pn depends only on

r = λ/μ, not on λ and μ separately. Adapting our notation we denote the optimal

revenues with μ as the arrival rate of the viewer as

R∗(μ) = R(λ∗(μ), μ) = λ∗(μ)(1− Pn(λ∗(μ)/μ))p(λ∗(μ))x. (2.41)

According to Part (i) of Proposition 27 Pn is increasing in r and thus for a given λ

decreasing in μ. Using that fact and optimality we have for μ1 ≥ μ2 that

R∗(μ1) ≥ λ∗(μ2)(1−Pn(λ∗(μ2)/μ1))p(λ∗(μ2)) ≥ λ∗(μ2)(1−Pn(λ∗(μ2)/μ2))p(λ∗(μ2)) = R∗(μ2),
(2.42)

Which completes the proof. �

Lemma 37 Let Γ (r) = rx(1−Pn(x, r)) in which Pn(x, r) is the full state probability.
Then Γ (r) is increasing concave in r (and hence in λ).
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Proof Taking the first derivative of Γ (r) =
∑n
i=1(rx)

i
∑n
j=0(rx)

j and simplifying gives

∂Γ (r)

∂r
=

∑n
i=1

∑n
j=0(rx)

i+j(i− j)
r
(∑n

j=0(rx)
j
)2 =

∑n
i=1 i(rx)

i

r
(∑n

j=0(rx)
j
)2 ≥ 0, (2.43)

which is indicating that Γ (r) is increasing in r. In order to get the convexity, we

take the second derivative of Γ (r). After some simplifications, we get

∂2Γ (r)

∂r2
=

∑n
i=1

∑n
j=0(rx)

i+ji(i− 1− 2j)
r2
(∑n

j=0(rx)
j
)3 , (2.44)

where after the reindexing s = i+ j, becomes

∂2Γ (r)

∂r2
=

∑n
s=1(rx)

s
∑s

i=1 i(3i− 2s− 1) +
∑2n

s=n+1(rx)
s
∑n

i=s−n i(3i− 2s− 1)
r2
(∑n

j=0(rx)
j
)3 ≤ 0,

(2.45)

which proves the convexity. To see why (2.45) holds it is effortless to verify that∑s
i=1 i(3i − 2s − 1) = 0; 1 ≤ s ≤ n, and

∑n
i=s−n i(3i − 2s − 1) = (n + 1)(2n + 1 −

s)(n− s) ≤ 0; n+ 1 ≤ s ≤ 2n, hence the result follows. �

Proof of Proposition 31 We need to show that ∂λ∗
∂x
≤ 0. By Implicit Function

Theorem, we get ∂λ
∗

∂x
as

∂λ∗

∂x
= −

∂F
∂x
∂F
∂λ∗

= −
∂
∂x
(Γ

′
(λ∗))p(λ∗) + ∂

∂x
(Γ (λ∗))p

′
(λ∗)

Γ ′′(λ∗)p(λ∗) + Γ ′(λ∗)p′(λ∗) + Γ ′(λ∗)p′(λ∗) + Γ (λ∗)p′′(λ∗)
,

(2.46)

in which by First Order Necessary Condition we have

F = Γ
′
(λ∗)p(λ∗) + Γ (λ∗)p

′
(λ∗) = 0. (2.47)
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Note that since x is discrete we are slightly abusing the Implicit Function Theorem.

Consider λ∗ to be a continuous function of x rather than the discrete one. If we

show λ∗ is increasing in real x we have indeed shown it increases in any integer x.

Similarly, if we show the functions Γ (λ∗) and Γ
′
(λ∗) are increasing (/ decreasing)

in any increasing sequence of real values x then the monotonicity is automatically

transferred to any increasing sequence of integer values x. Since, p(λ∗) > 0, p
′
(λ∗) <

0, p
′′
(λ∗) < 0 and Γ (λ∗) > 0, Γ

′
(λ∗) > 0, Γ

′′
(λ∗) < 0 (See Lemma (37)), the

denominator is negative. Hence, we are left with showing

∂

∂x
(Γ

′
(λ∗))p(λ∗) +

∂

∂x
(Γ (λ∗))p

′
(λ∗) ≤ 0. (2.48)

Using the FONC, Γ
′
(λ∗)p(λ∗) + Γ (λ∗)p

′
(λ∗) = 0, we need to show

g(λ∗) =
∂

∂x
(Γ (λ∗))Γ

′
(λ∗)− ∂

∂x
(Γ

′
(λ∗))Γ (λ∗) ≥ 0. (2.49)

Without loss of generality, we set μ = 1 and thus λ∗ = r. Now we have Γ (r) =
∑n
i=1(rx)

i
∑n
j=0(rx)

j . Hence we get

∂Γ (r)

∂x
=
(
∑n

i=1 ix
i−1ri)

(∑n
j=0(rx)

j
)
− (∑n

i=1(rx)
i)
(∑n

j=0 jr
j−1rj

)
(∑n

j=0(rx)
j
)2 .

After some simplifications, we get

∂Γ (r)

∂x
=

∑n
i=1

∑n
j=0(rx)

i+j(i− j)
x
(∑n

j=0(rx)
j
)2 =

∑n
i=1 i(rx)

i

x
(∑n

j=0(rx)
j
)2 .

Hence
∂Γ (r)

∂x

∂Γ (r)

∂r
=

∑n
i=1

∑n
j=1(rx)

i+j−1ij(∑n
j=0(rx)

j
)4 . (2.50)
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Moreover ∂
∂x
(Γ

′
(λ∗)) is obtained as

∂

∂x
(Γ

′
(λ∗)) =

∑n
i=1

∑n
j=0(rx)

i+j−1(i2 − 2ij)(∑n
j=0(rx)

j
)3 .

Hence ∂
∂x
(Γ

′
(λ∗))Γ (λ∗) becomes

∂

∂x
(Γ

′
(λ∗))Γ (λ∗) =

∑n
i=1

∑n
j=0

∑n
k=1(rx)

i+j+k−1(i2 − 2ij)(∑n
j=0(rx)

j
)4 . (2.51)

In order to show g(λ∗) ≥ 0 we are enough to show

P (x, r, n) =
n∑
i=1

n∑
j=0

(rx)i+j−1ij −
n∑
i=1

n∑
j=0

n∑
k=1

(rx)i+j+k−1(i2 − 2ij) ≥ 0.

Note that we can represent P (x, r, n) as

P (x, r, n) =
3n∑
s=1

cs(rx)
s−1,

in which cs is the appropriate coefficient of the term (rx)s−1. We show that P (x, r, n) ≥
0 by showing cs ≥ 0, 2 ≤ s ≤ 3n. Consider the three intervals 2 ≤ s ≤ n,

n + 1 ≤ s ≤ 2n, and 2n + 1 ≤ s ≤ 3n. We need to show cs ≥ 0 holds in each

of these intervals separately. Since the procedures of proofs for the three intervals

are similar we only show for 2 ≤ s ≤ n. For every s ∈ {2, ..., n} the coefficient of
the term (rx)s−1 in

∑n
i=1

∑n
j=0(rx)

i+j−1ij becomes
∑s

i=1 i(s − i), while the coeffi-
cient of (rx)s−1 in the second sum,

∑n
i=1

∑n
j=0

∑n
k=1(rx)

i+j+k−1(i2 − 2ij) becomes∑s
i=1

∑s−i
k=1(i

2 − 2i(s− i− k)). Hence we get

cs =
s∑
i=1

i(s− i)−
s∑
i=1

s−i∑
k=1

(i2 − 2i(s− i− k)) = 0. (2.52)
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This is true because
∑s

i=1 i(s−i) =
∑s

i=1

∑s−i
k=1(i

2−2i(s−i−k)) = 1
6
s(s+1)(s+2).

Using the same procedure it can be checked that cs ≥ 0 for other intervals as well.
�
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Appendix C

C1. Graphical Presentation of the Revenue Gap in Section

5.3

The following figure illustrates a schematic presentation of how the revenue gap is

computed through the steps 1-3 in Section 5.3 (Non-Poisson Arrivals).

Advertisers' arrival rate (λ)

R
ev

en
ue

 R
at

e

RD1,D2(λ*
Exp,μD2)

λ*
Exp

The revenue gap

RExp(λExp,μExp)

RD1,D2(λ*
D1,μD2)

RD1,D2(λD1,μD2)

λ*
D1

Figure 2.1: A schematic presentation of calculating the revenue gap when the adver-
tisers’ and the viewers’ interarrival processes are non-Poisson, and the price function
depends on the number of clicks X in which X is a random variable.

C2. Examples of Real Publishers Obtaining CPC By Dividing

CPM by CTR

In this section, we give two examples of real publishers that obtain the CPC price

by dividing the CPM price by the CTR.
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Theorem Creations The first example is from the leading web banner ad design

firm Theorem Creations. This well-known company specializes in rich media

online advertising across all media platforms including Flash, Animated GIF,

DART Motif, PointRoll, Eyeblaster, Yahoo Rich Media, Atlas, and other ban-

ner ad technologies. As depicted in the slide below, this company provides a

relatively full explanation of how to convert the CPM prices to the CPC prices

by dividing the CPM prices by the CTR. To see the company’s page visit:

http://www.theoremcreations.com/ppc/cpm_calculator.php .

Anil Batra.com The other example (below slide) belongs to the website of a lead-

ing Search and Analytics Practitioner, which recommends the same heuristic

for converting the prices.

The page can be reached at: http://www.anilbatra.com/digitalmarketing/web-analytics-

jobs.asp.
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Appendix D

D1. Direct Sales Channels

In Chapter 2, we focused on the CPC pricing scheme through advertising networks.

Cost per click pricing through ad networks captures around 25% of the whole online

advertising market (IAB 2009; Business Week 2009; Media Banker 2009). One of the

related problems, which can be explored is how CPC pricing policies can be affected

if a publisher sells the slots to the advertisers using its own direct sale’s channel

rather than using ad networks 2.

In this section, we do not intend to model the CPC pricing of the publishers

using direct sales channel in detail as it focuses on a different section of the market

and adds several layers of complexities, which make its analysis beyond the scope

of this chapter. In this section, we only consider a special case, where the publisher

deals with impatient advertisers only, and leave the more extensive analysis of this

extension for the future research.

In order to consider this extension, we assume the web publisher has only a single

page. We label the slots from 1 to n. The slots can be different from each other. We

define the type-i advertisers to be the advertisers interested in occupying the slot i

(0 ≤ i ≤ n). Similarly, we consider the type-i viewers to be the visitors whose first
clicking-decision is to click is on the ad i. We let the type-i advertisers’ and viewers’

arrival rates be λi, and μi respectively. We let the number of slots be equal to n.

Upon arrival at the publisher’s system if a type-i advertisers realize that the slot i is

unavailable, they consider slot j (j �= i), instead, with the probability pij = αk λj/λi,
2Note that the share of the CPC pricing though publishers’ direct sales’ channels is also about

25% of the whole market. That said, the two different section are approximately equally divided.
(IAB 2010; Business Week 2009; Media Banker 2009)
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with αk ≤ min{λj/λi} for all 0 ≤ i, j ≤ n. k is the number of ads in the publisher’s
system. The structure of pij has been made for tractability. pij’s structure implies

that if slot i is unavailable the advertisers are more likely to check more popular slots

first.

Similarly, upon arrival at the publisher’s system if a viewer faces with an empty

slot or a filler ad he considers the ad positioned in slot j with the probability pij =

γn−k μj/μi, where γn−k is a coefficient, which is related to the number of empty slots

with γn−k ≤ min{μj/μi} for all 0 ≤ i, j ≤ n. That is, if a viewer decides to consider
other ads in the system, he is more likely to consider and click on the more popular

ones. The following proposition gives the closed-form solution of the steady state

probability of the number of clicks left for each ad in the system.

Proposition 38 Let λk and μk be the type-k advertisers’ and viewers’ arrival rates

respectively. Then the general flow balance equation of the publisher’s system is:

⎛⎝(1 + γ|G0(k)|) ∑
j∈G>0(k)

μj + (1 + α|G>0(k)|)
∑

j∈G0(k)
λ
j

⎞⎠ π
(k)

(2.53)

=
∑

j∈(G>0(k)\Gx(k))∪G0(k)
μj(1 + γ|G0(k)\{j}|

)π
(k+eT

j
)
+
∑

j∈Gx(k)
λ
j
(1 + α|G>0(k)|−1)π(k−xjeTj )

,

where xk is the number of clicks requested by the type-k advertiser. Furthermore,

the steady state probability of the number of clicks left to satisfy for each ad is ex-

pressed as

π(k) = η
(
Π
|G>0(k)|−1
i=1 (1 + αi)

)(
Π
i∈G>0(k)

λ
i

)(
Π
|G0(k)|−1
j=1 (1 + γj)

)(
Π
j∈G0(k)

μj

)
,

(2.54)
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where η is a positive coefficient, which is obtained as

η =

(
x1∑
u1=0

...
xn∑
un=0

(
Π
|G>0(U)|−1
i=1 (1 + αi)

) (
Πi∈G>0(U)λi

) (
Π
|G0(U)|−1
j=1 (1 + γj)

) (
Πj∈G0(U)μj

))−1
.

(2.55)

D2. Random Display Ad Rotations

Another extension to the CPC model is its natural connection to the CPM system

in which multiple ads are displayed, one at a time, in the location of a single slot.

In order to consider this relation, we let the number of slots be merely equal to 1.

(An example of a system with a single slot is the free E-mail environment websites,

which often provide a single skyscraper ad slot on the right side or top of the page.)

This single slot is used to display up to n individual banner ads, one at a time. We

let advertisers arrive at the system with the stationary rate λ, and request their ads

to be shown to x unique viewers appearing to the system. We also let the viewers

arrive at the system with the stationary rate μ. Upon arrival at the system, the

viewer sees only one of the ads on hand with identical probability.

It is easy to notice that the abovementioned system, in essence, corresponds to

the CPC model that we considered in Chapter 2. Hence, all the results discussed in

Section 2.6 of Chapter 2 are applied here as well. For example, if the ads are given

different display weights, which is in fact more common in practice, the system’s

performance becomes almost the same as the CPC. By the same token, the results do

not change if the advertisers request randomly different clicks, or, even if their arrival

rates constantly change instead of being stationary. Nevertheless, with more slots

(unless there are no inflows among them), investigating the system’s characteristics

turns out to be excessively complex. Exploring this system is beyond the scope of
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this manuscript, and we leave it for future research.

D3. Slot Assignment Decisions Among Subsystems

D3.1. Slot Assignment Decisions Between Two CPC Subsystems

In Chapters 1 and 2, we focused on pricing of the display as one of the significant

problems that web publishers face. In those chapters, the number of slots in each

subsystem was considered fixed. One of the related problems is the capacity decisions.

That is, the publisher may know the prices of each subsystem and wishes to know

how to split the total capacity of each page (in terms of the possible number of

slots) into different subsystems. In this section, we consider briefly this issue using

a stylized model, and leave a deeper analysis of this issue for future research.

In order to start, we assume the publisher has only a single webpage. The page

contains S distinct subsystems, namely s = 1, 2, ..., S. There are n slots in the page

on the whole. We assume that the slots can be assigned to any of the subsystems

with only little change in the size and shape. Each subsystem s contains ns slots,

which is the decision variable. Let λs be the effective arrival rate of the advertisers

interested in posting their ads in subsystem s. Likewise, let μs be the viewers’ arrival

rate whose first decision is to click on one of the slots in subsystem s. Each advertiser

interested in subsystem s requests xs clicks on average. The price per click for each

ad in the subsystem s is assumed to be ps. The web publisher wishes to maximize

the page’s overall expected revenue rate given the best slot assignments the decision

variables ns, s = 1, 2, ..., S. Thus, the web publisher’s maximization problem can be
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expressed as

Max
{n1,...,nS}

R(n1, ..., nS) =
S∑
s=1

λs(1− Psns(λs, μs, xs, ns))psxs (2.56)

s.t.
S∑
s=1

ns = n,

where Psi (λs, μs, xs, ns) is the probability of having i advertisers in the subsystem s.

For convenience, we consider S = 2. That is, we assume that the page has only

two subsystems, namely, high price and low price. Then, the publisher’s objective

function can be expressed as

Max
n1

R(n1;n) =
λ1x1p1(1− (r1x1)n1)
(1− (r1x1)n1+1) +

λ2x2p2(1− (r2x2)n−n1)
(1− (r2x2)n−n1+1) . (2.57)

The subsequent proposition gives the conditions that determine the optimal policy

for the slot assignments between two subsystems.

Proposition 39 In an n-slot system with S = 2 independent subsystems the optimal

policy for slot assignments satisfies

λ1x1p1P
1
n∗1−1(x1, n

∗
1 − 1)

λ2x2p2P2n∗2−1(x2, n− n∗1 − 1)
≥ P20(x2, n− n∗1)

P10(x1, n
∗
1)

, (2.58)

λ1x1p1P
1
n∗1
(x1, n

∗
1)

λ2x2p2P2n∗2−2(x2, n− n∗1 − 2)
≤ P20(x2, n− n∗1 − 1)

P10(x1, n
∗
1 + 1)

. (2.59)

(2.58) implies that at the optimal allocation level, the ratio of the first subsystem’s

lost sales with capacity (n∗1 − 1) to the second subsystem’s lost sales with capacity
(n − n∗1 − 1) is more than the ratio of the empty-state probability of the second
subsystem to the first, when one unit of capacity is added to each of the subsystems.

Likewise, inequality (2.59) implies that the ratio of the first subsystem’s lost sales to
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Figure 2.2: The optimal number of slots assigned to Subsystem 1. It can be observed
that the optimal number of slots allocated to a subsystem is non-monotonic in the
requested number of clicks.

the second subsystem’s lost sales with the respective capacities n∗1, and n − n∗1 − 2
is less than the ratio of the empty-state probability of the second subsystem to the

first, when one unit of capacity is added to each of the subsystems.

As an illustrative example, we set the advertisers’ arrival rates for both sub-

systems equal to 1. We also set the viewers arrival rates for the subsystems to

μ1 = 1, 000, 000 and μ2 = 500, 000 per time unit. Further, we consider the prices

p1 and p2 to be equal to $0.75 and $2 per every click respectively. The advertisers

for the subsystem 2 request x2 = 1, 000, 000 clicks at all times. We vary the number

of slots in the system from 1 to 15. Figure (2.2) shows the optimal number of slots

assigned to subsystem 1 for different values of x1. From the figure, it is clear that the

optimal number of slots assigned to each subsystem is not monotone with respect to

the requested numbers of clicks for that subsystem.
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D3.2. Slot Assignments Between A CPC and A CPM Subsystems

Next, we consider the related problem of the optimal slot assignments between a

CPC and a CPM subsystems. Clearly, using (2.10), the publisher’s maximization

problem can be expressed as

Max
ncpm

R(ncpm) = λcpmxcpmpcpm
∑ncpm−1

j=0

(
xcpm+ncpm−1

j

)
rjcpm∑ncpm

j=0

(
xcpm+ncpm−1

j

)
rjcpm

+
λcpcxcpcpcpc(1− (rcpcxcpc)n−ncpm)

(1− (rcpcxcpc)n−ncpm+1) ,

(2.60)

where ncpm is the number of slots assigned to the CPM subsystem. Although (2.60)

considers only one subsystem from each type, it is still very difficult to solve analyt-

ically. Hence, we restrict our focus on only an illustrative numerical analysis.

As in the previous section, we let the advertisers’ arrival rates at both subsystems

be equal to 1. We also let the viewers’ arrival rates for the two subsystems be

μ1 = 1, 000, 000, and μ2 = 50, 000 per time unit. Furthermore, we consider the

CPM price pcpm = 0.05, and the CPC price pcpc = 5. The number of impressions

requested for the CPM subsystem is on average xcpm = 1, 000, 000. Figure (2.3) shows

the optimal number of slots assigned to the CPC subsystem for different values of

requested clicks xcpc.
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Figure 2.3: Optimal number of slots assigned to the CPC subsystem. It can be
observed that the optimal number of slots allocated to the CPC subsystem is non-
monotonic in the requested number of clicks.
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Appendix E

Proof of Propositions in Appendix D

Proof of Proposition 38 Let G>0(k) = {i |ki > 0}, G0(k) = {i |ki = 0} ,and
Gx(k) = {i |ki = xi}, where xi is the number of clicks assigned to the banner lo-
cated in slot i. Let

eTi be an n tuple row vector with 1 in the ith position and zero elsewhere. Then

the state of the system can be written as

k = (k1, k2, ..., kn) =
∑

i∈G>0(k)\Gx(k)
kie

T
i +

∑
i∈Gx(k)

xie
T
i . (2.61)

Hence all the flow balance equations of the system can be represented as the

following single general transition equation. That is,

⎛⎝(1 + γ|G0(k)|) ∑
j∈G>0(k)

μj + (1 + α|G>0(k)|)
∑

j∈G0(k)
λ
j

⎞⎠ π
(K)

(2.62)

=
∑

j∈(G>0(k)\Gx(k))∪G0(k)
μj(1 + γ|G0(k)\{j}|

)π
(k+eT

j
)
+
∑

j∈Gx(k)
λ
j
(1 + α|G>0(k)|−1)π(k−xjeTj )

.

In order to illustrate better, before the rest of the proof let us see some examples

for this.

Example 1 If k = (k1, x2, 0, k4) then n = 4,G>0(k) = {1, 2, 4},G0(k) = {3},Gx(k) =
{2}, G>0(k)\Gx(k) = {1, 4}, (G>0(k)\Gx(k))∪G0(k) = {1, 2, 4}, |G>0(k)| = 3, |G0(k)| =
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1. Hence we get

[(1 + γ1)
∑

j∈G>0(k)
μj + (1 + α2)λ3]π(k) (2.63)

=
∑

j∈(G>0(k)\Gx(k))∪G0(k)
μj(1 + γ|G0(k)\{j}|

)π
(k+eT

j
)
+ λ3(1 + α2)π(k−x2eT2 )

.

By expanding, we obtain

[(1 + γ1)
∑

j∈{1,2,4}
μj + (1 + α2)λ3]π(k1,x2,0,k4) =

∑
j∈{1,4}

μj(1 + γ1)π((k1,x2,0,k4)+eTj )
(2.64)

+
∑
j∈{3}

μj(1 + γ0)︸ ︷︷ ︸
1

π
((k1,x2,0,k4)+e

T
j
)

+ λ3(1 + α2)π((k1,x2,0,k4)−x2(0,1,0,0)) ,

which is simplified to

[(1 + γ1)
∑

j∈{1,2,4}
μj + (1 + α2)λ3 ]π(k1,x2,0,k4) = μ1(1 + γ1)π(k1+1,x2,0,k4) (2.65)

+ μ4(1 + γ1)π(k1,x2,0,k4+1)+

μ3π(k1,x2,1,k4) + λ3(1 + α2)π(k1,0,0,k4) .

By expanding, we obtain

[(1 + γ1)
∑

j∈{1,2,4}
μj + (1 + α2)λ3]π(k1,x2,0,k4) =

∑
j∈{1,4}

μj(1 + γ1)π((k1,x2,0,k4)+eTj )
(2.66)

+
∑
j∈{3}

μj(1 + γ0)︸ ︷︷ ︸
1

π
((k1,x2,0,k4)+e

T
j
)

+ λ3(1 + α2)π((k1,x2,0,k4)−x2(0,1,0,0)) ,
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which is simplified to

[(1 + γ1)
∑

j∈{1,2,4}
μj + (1 + α2)λ3 ]π(k1,x2,0,k4) = μ1(1 + γ1)π(k1+1,x2,0,k4) (2.67)

+ μ4(1 + γ1)π(k1,x2,0,k4+1)

+ μ3π(k1,x2,1,k4) + λ3(1 + α2)π(k1,0,0,k4) .

Example 2 If in (2.62) we have G>0(k) = {1, 2, ..., n}, and G0(k) = Gx(k) = {}
then |G>0(k)| = n, |G0(k)| = 0 ,and k =

n∑
i=1

kie
T
i (ki < xi). Therefore, we get

(
n∑
j=1

μj

)
π

(

n∑
i=1

kie
T
i
)

=
n∑
j=1

μjπ

(

n∑
i=1

kie
T
i
+eT

j
)

.

Example 3 If G0(k) = {1, 2, ..., n}, and G>0(k) = Gx(k) = {},G>0(k)\Gx(k) =
{}then |G>0(k)| = 0 and |G0(k)| = n. Thus (2.62) is simplified to

(
n∑
j=1

λj

)
π

(

n∑
i=1

kie
T
i
)

= (1 + γ
n−1)

n∑
j=1

μjπ(eT
j
)
.

Going back to the proof, consider the equation (2.62).In order to find a solution

for it, we present it the in following way:

∑
j∈G>0(k)\Gx(k)

(1 + γ|G0(k)|
)μj[π(k) − π(k+eT

j
)
] (2.68)

+
∑

j∈Gx(k)
[(1 + γ|G0(k)|

)μjπ(k) − λj(1 + α|G>0(k)|−1)π(k−xjeTj ) ] (2.69)

+
∑

j∈G0(k)
[λj(1 + α|G>0(k)|)π(k) − μj(1 + γ|G0(k)|−1)π(k+eTj ) ] = 0. (2.70)

168



This is a vector difference equation, where does not have any standard way to

solve. In order to obtain the solution of this equation, we treat it like an identity

and make each of the disjoint sums (2.68), 2.69), and (2.70) equal to zero, and

obtain some results. Later we show that the obtained results, indeed, construct the

equation’s unique solution. From (2.68)-(2.70), we obtain respectively

π
(k)
= π

(k+eT
j
)
; ∀j ∈ G>0(k)\Gx(k), (2.71)

(1 + γ|G0(k)|
)μjπ(k) = λj(1 + α|G>0(k)|−1)π(k−xjeTj )

; ∀j ∈ Gx(k), (2.72)

λj(1 + α|G>0(k)|)π(k) = μj(1 + γ|G0(k)|−1)π(k+eTj )
; ∀j ∈ G0(k). (2.73)

Now using the following two lemmas, we verify the solution.

Lemma 40 Let k =
∑

i∈G>0(k)\Gx(k)
kie

T
i +

∑
i∈Gx(k)

xie
T
i be the vector of the number of

clicks left in each slot. If the identities (2.68), (2.69), and (2.70) hold then the

following relation always holds.

π
(k)
= π

(

∑
i∈G>0(k)\Gx(k)

kieTi +

∑
i∈Gx(k)

xieTi )
=

∏
i∈Gx(k)

λi
|G>0(k)|−1∏

i=|G>0(k)|−|Gx(k)|
(1 + α

i
)

∏
i∈Gx(k)

μi
|Gx(k)|+|G0(k)|−1∏

i=|G0(k)|
(1 + γ

i
)

π
(

∑
i∈G>0(k)\Gx(k)

kie
T
i
)

.

(2.74)

Proof By (2.82) we have (1 + γ|G0(k)|)μjπ(k) = λj(1 + α|G>0(k)|−1)π(k−xjeTj )
for

∀j ∈ Gx(k). Hence we get

π
(

∑
i∈G>0(k)\Gx(k)

kieTi +

∑
i∈Gx(k)

xieTi )
=
λj1(1 + α|G>0(k)|−1)

μj1(1 + γ|G0(k)|
)
π
(

∑
i∈G>0(k)\Gx(k)

kie
T
i
+

∑
i∈Gx(k)\{j1}

xie
T
i
)

, j1 ∈ Gx(k).
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Similarly, for any j2 ∈ Gx(k)/{j1} ⊂ Gx(k) we have

π
(

∑
i∈G>0(k)\Gx(k)

kieTi +

∑
i∈Gx(k)\{j1}

xieTi )
=
λ
j2
(1 + α|G>0(k)|−2)

μ
j2
(1 + γ|G0(k)|+1

)
π
(

∑
i∈G>0(k)\Gx(k)

kie
T
i
+

∑
i∈Gx(k)\{j1,j2}

xie
T
i
)

.

Continuing with a similar way get

π
(

∑
i∈G>0(k)\Gx(k)

kieTi +

∑
i∈Gx(k)

xieTi )

=
λj1(1 + α|G>0(k)|−1)

μ
j1
(1 + γ|G0(k)|

)

λ
j2
(1 + α|G>0(k)|−1)

μ
j2
(1 + γ|G0(k)|

)
...
λ
j|Gx(k)|

(1 + α|G>0(k)|−|Gx(k)|)

μ
j|Gx(k)|

(1 + γ|G0(k)|+|Gx(k)|−1
)
π
(

∑
i∈G>0(k)\Gx(k)

kie
T
i
)

=

∏
j∈Gx(k)

λj
|G>0(k)|−1∏

j=|G>0(k)|−|Gx(k)|
(1 + α

j
)

∏
j∈Gx(k)

μj
|Gx(k)|+|G0(k)|−1∏

j=|G0(k)|
(1 + γ

j
)

π
(

∑
i∈G>0(k)\Gx(k)

kie
T
i
)

,

which completes the proof. �

Lemma 41 Let k =
∑

i∈G>0(k)\Gx(k)
kie

T
i be the vector of the number of clicks left in

each slot. If all the identities (2.68), (2.69), and (2.70) hold then:

π
(

∑
i∈G>0(k)\Gx(k)

eT
i
)

=

∏
i∈G>0(k)\Gx(k)

λi
|G>0(k)|−|Gx(k)|−1∏

i=1

(1 + α
i
)

∏
i∈Gx(k)

μi
n−1∏

i=|G0(k)|+|Gx(k)|
(1 + γ

i
)

π
(0)
. (2.75)
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Proof By (2.83) we have

π
(

∑
i∈G>0(k)\Gx(k)

eT
i
)

= π
(

∑
i∈G>0(k)\Gx(k)\{j1}

eT
i
+eT

j1
)

(2.76)

=
λ
j1
(1 + α|G>0(k)\Gx(k)\{j1}|)

μ
j1
(1 + γ|G0(k)∪Gx(k)|

)
π
(

∑
i∈G>0(k)\Gx(k)\{j1}

eT
i
)

, j1 ∈ G>0(k)\Gx(k).

We note that |G>0(k)\Gx(k)\{j1}| = |G>0(k)| − |Gx(k)| − 1, and |G0(k) ∪ Gx(k)| =
|G0(k)|+ |Gx(k)| .

In addition, with a an analogous argument we get

π
(

∑
i∈G>0(k)\Gx(k)\{j1}

eT
i
)

= π
(

∑
i∈G>0(k)\Gx(k)\{j1}\{j2}

eT
i
+eT

j2
)

(2.77)

=
λ
j2
(1 + α|G>0(k)\Gx(k)\{j1}\{j2}|)

μ
j2
(1 + γ|G0(k)∪Gx(k)|+1

)
π
(

∑
i∈G>0(k)\Gx(k)\{j1}\{j2}

eT
i
)

,

j2 ∈ G>0(k)\Gx(k)\{j1},

where |G>0(k)\Gx(k)\{j1}\{j2}| = |G>0(k)| − |Gx(k)| − 2. Combining the two
results above gives

π
(

∑
i∈G>0(k)\Gx(k)

eT
i
)

=

λ
j1
(1 + α|G>0(k)|−|Gx(k)|−1)

μ
j1
(1 + γ|G0(k)|+|Gx(k)|)

λj2(1 + α|G>0(k)|−|Gx(k)|−2)

μj2(1 + γ|G0(k)|+|Gx(k)|+1
)
π
(

∑
i∈G>0(k)\Gx(k)\{j1,j2}

eT
i
)

, j1, j2 ∈ G>0(k)\Gx(k).
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Keeping on this way we get

π
(

∑
i∈G>0(k)\Gx(k)

eT
i
)

=

λ
j1
(1 + α|G>0(k)|−|Gx(k)|−1)

μ
j1
(1 + γ|G0(k)|+|Gx(k)|)

λj2(1 + α|G>0(k)|−|Gx(k)|−2)

μj2(1 + γ|G0(k)|+|Gx(k)|+1
)
...

λ
j
(|G>0(k)\Gx(k)|)

(1 + α|G>0(k)|−|Gx(k)|−|G>0(k)\Gx(k)|)

μ
j
(|G>0(k)\Gx(k)|)

(1 + γ|G0(k)|+|Gx(k)|+|G>0(k)\Gx(k)|−1)
π
(0)
.

Furthermore, it is easily observed that

1 + α|G>0(k)|−|Gx(k)|+|G>0(k)\Gx(k)| = 1 + α0 = 1,

and

1 + γ|G0(k)|+|Gx(k)|+|G>0(k)\Gx(k)|−1 = 1 + γn−1.

Hence the result follows and the lemma is proven. �

Going back to the proof, consider the equation (2.62).In order to find a solution

for it, we present it in the following way:

∑
j∈G>0(k)\Gx(k)

(1 + γ|G0(k)|
)μj[π(k) − π(k+eT

j
)
] (2.78)

+
∑

j∈Gx(k)
[(1 + γ|G0(k)|

)μjπ(k) − λj(1 + α|G>0(k)|−1)π(k−xjeTj ) ] (2.79)

+
∑

j∈G0(k)
[λj(1 + α|G>0(k)|)π(k) − μj(1 + γ|G0(k)|−1)π(k+eTj ) ] = 0. (2.80)

This is a vector difference equation, where does not have any standard way to

solve. In order to obtain the solution of this equation, we treat it like an identity
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and make each of the disjoint sums (2.78), 2.79), and (2.80) equal to zero, and

obtain some results. Later we show that the obtained results, indeed, construct the

equation’s unique solution. From (2.78)-(2.80) we obtain respectively

π
(k)
= π

(k+eT
j
)
; ∀j ∈ G>0(k)\Gx(k), (2.81)

(1 + γ|G0(k)|
)μjπ(k) = λj(1 + α|G>0(k)|−1)π(k−xjeTj )

; ∀j ∈ Gx(k), (2.82)

λj(1 + α|G>0(k)|)π(k) = μj(1 + γ|G0(k)|−1)π(k+eTj )
; ∀j ∈ G0(k). (2.83)

By Lemma 40, we showed

π
k
= π

(

∑
i∈G>0(k)\Gx(k)

kieTi +

∑
i∈Gx(k)

xieTi )
=

∏
i∈Gx(k)

λi
|G>0(k)|−1∏

i=|G>0(k)|−|Gx(k)|
(1 + α

i
)

∏
i∈Gx(k)

μi
|Gx(k)|+|G0(k)|−1∏

i=|G0(k)|
(1 + γ

i
)

π
(

∑
i∈G>0(k)\Gx(k)

kie
T
i
)

.

However, from (2.81), we have

π
(

∑
i∈G>0(k)\Gx(k)

kie
T
i
)

= π
(

∑
i∈G>0(k)\Gx(k)

eT
i
)

. (2.84)

Hence we get πk as

π
k
= π

(

∑
i∈G>0(k)\Gx(k)

kieTi +

∑
i∈Gx(k)

xieTi )
=

∏
i∈Gx(k)

λi
|G>0(k)|−1∏

i=|G>0(k)|−|Gx(k)|
(1 + α

i
)

∏
i∈Gx(k)

μi
|Gx(k)|+|G0(k)|−1∏

i=|G0(k)|
(1 + γ

i
)

π
(

∑
i∈G>0(k)\Gx(k)

eT
i
)

.

(2.85)
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Using Lemma 41, we get

πk =

⎛⎜⎜⎜⎜⎝
∏

i∈Gx(k)
λi

|G>0(k)|−1∏
i=|G>0(k)|−|Gx(k)|

(1 + α
i
)

∏
i∈Gx(k)

μi
|Gx(k)|+|G0(k)|−1∏

i=|G0(k)|
(1 + γ

i
)

⎞⎟⎟⎟⎟⎠
⎛⎜⎜⎜⎜⎝

∏
i∈G>0(k)\Gx(k)

λi
|G>0(k)|−|Gx(k)|−1∏

i=1

(1 + α
i
)

∏
i∈Gx(k)

μi
n−1∏

i=|G0(k)|+|Gx(k)|
(1 + γ

i
)

⎞⎟⎟⎟⎟⎠ π(0) ,
(2.86)

where after some manipulation becomes

π
k
=

∏
i∈G>0(k)

λi
|G>0(k)|−1∏

i=1

(1 + α
i
)

∏
i∈G>0(k)

μi
n−1∏

i=|G0(k)|
(1 + γ

i
)
π(0). (2.87)

Hence π
k
with the above relation is the solution of the system. Now if we take

π0 = η
n∏
i=1

μi

n−1∏
i=1

(1 + γ
i
), (2.88)

then we get π
k
as

π
k
= η

∏
i∈G>0(k)

λi

|G>0(k)|−1∏
i=1

(1 + α
i
)
∏

i∈G0(k)
μi

|G0(k)|−1∏
i=1

(1 + γ
i
). (2.89)

In order to obtain η, knowing that
∑
k

π
(k)
= 1, we obtain

η
∑
k

∏
i∈G>0(k)

λi

|G>0(k)|−1∏
i=1

(1 + α
i
)
∏

i∈G0(k)
μi

|G0(k)|−1∏
i=1

(1 + γ
i
) = 1. (2.90)
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Hence

η =

⎛⎝ x1∑
k1=0

...

xn∑
kn=0

∏
i∈G>0(k)

λi

|G>0(k)|−1∏
i=1

(1 + α
i
)
∏

i∈G0(k)
μi

|G0(k)|−1∏
i=1

(1 + γ
i
)

⎞⎠−1

. (2.91)

Finally, the probability that there are t advertisers in the system becomes

Pr(t) =
∑
k

π
(k)

|G>0(k)|=t

. (2.92)

�

Proof of Proposition 39 Using the definition of R(n1;n) and after some simpli-

fication we reach to

R(n1;n)−R(n1−1;n) = p1(r1x1)
n1μ1(1− r1x1)2

(1− (r1x1)n1)(1− (r1x1)n1)−
p2(r2x2)

n−n1μ2(1− r2x2)2
(1− (r2x2)n−n1)(1− (r2x2)n−n1+1)

.

(2.93)

However, it is easy to see that

p1(r1x1)
n1μ1(1− r1x1)2

(1− (r1x1)n1)(1− (r1x1)n1) = λ1x1p1P
1
n1−1(x1, n1 − 1)P10(x1, n1), (2.94)

and

p2(r2x2)
n−n1μ2(1− r2x2)2

(1− (r2x2)n−n1)(1− (r2x2)n−n1+1)
= λ2x2p2P

2
n∗2−1(x2, n− n1 − 1)P

2
0(x2, n− n1).

(2.95)

Hence from R(n1;n) − R(n1 − 1;n) ≥ 0 and the first condition follows. The

second condition is obtained with a similar procedure and the result follows. �
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Chapter 3

Competition between Publishers

3.1 Introduction

The Internet has revolutionized the way companies do business. It has created op-

portunities for new businesses and made business processes more efficient. Many

companies are taking advantage of the Internet to reach out to more customers and

are allocating increasing portions of their marketing budgets towards online adver-

tising. Display advertising is a growing business with about $25 billion revenue in

2010. This revenue is expected to rise with a promising rate over the coming years

(McAfee et al. 2010).

Web publishers are often affected by intense competition that they need to con-

sider when planning their advertising operation. For instance, just recently Google,

the online search ad giant, has announced that it has decided to enter the online

display advertising business competition. As a result, the company has started a

vigorous advertising campaign, called Watch This Space, for its display advertising

platform (New York Times 2010).
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In this competitive environment one of the most challenging issues faced by web

publishers is how the publishers’ (display) pricing policies are affected when the

publishers are competing with other firms. Despite the vast amount of literature on

the subject of online advertising and in particular display advertising little work has

addressed competition among web publishers and the strategic pricing implications

for them. In this chapter, we fill this gap by providing a stylized extension of our

basic model in the first chapter incorporating competitive settings.

Currently, available models do not provide a formal method for addressing prob-

lems where web publishers determine the CPM prices for the websites affected by

the intense competition. In this chapter, we explore the interactions of two web

publishers in a competitive setting and provide various interesting insights about

their strategic behavior at equilibrium. First, we focus on steady-state equilibriums

(SSE), which tend to be significantly more general than equilibriums obtained merely

in a one-stage game. The reason for this is that by considering SSE, we study the

strategic behavior of the publishers in the limit when the game is played many times.

As a result, the players learn from the past and become more sophisticated decision

makers.

In addition, as the SSE game is very difficult for analytical tractability, we con-

sider an alternative stylized model similar to SSE game. This is called infinitely re-

peated competition game of incomplete information on side between two publishers.

The incomplete information feature, where one publisher enjoys private information,

is not discussed in the SSE competition as it is intractable analytically. By private

information, we mean that the first publisher knows about the real advertisers’ ar-

rival rates into the competition setting. However, this information is private only to

the first publisher. The second publisher is unaware of this critical information and
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decides on its prices based on its observations from the two publishers’ past price

decisions. Note that the repeated incomplete information competition still tends

to be too challenging to analyze analytically. As a result, we limit our focus only

on zero-sum competitions, where the publishers’ payoffs always sum to zero at each

interaction stage. That is, a revenue gain for a publisher at one stage is the other

one’s lost opportunity cost.

The primary contributions of this chapter are:

1. We construct a modeling framework capturing the main trade-offs in the op-

erations of two web publishers interacting with each other in a competitive

environment. We consider the steady-state equilibrium competition as well as

the repeated competition game of incomplete information on one side. Both of

the competition models discussed in this chapter appear to be new compared

to the work in the literature.

2. In the steady-state equilibrium game between two publishers we demonstrate

the following observations:

• We observe that for two publishers competing in the same market, the
optimal managerial policy is to choose a mixture of cooperation and com-

petition rather than a pure competition.

• We observe that making larger contracts (with more impressions) with
advertisers, not only benefits the publisher but also its competitor. That

is, if a publisher offers larger contracts the revenue of both publishers

increase at equilibrium.

• We observe that competing with a publisher that has more slots on its
website, may be less profitable for the competitor. That is, an increase
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in the number of slots in a publisher’s system will lead its competitor’s

revenue to decrease. However, we note that the increase in the number

of slots has a non-obvious impact on the publisher’s own revenue, which

depends on the current number of slots on the website and the number

of slots added. For instance, if many slots are added both publishers’

revenues can decrease. We observe a similar behavior with respect to the

web traffic.

• An increase in a publisher’s marginal cost will cause both publishers’
prices to increase at equilibrium. However, the publisher whose cost has

increased loses revenues, while the other achieves more.

3. In the repeated competition game of incomplete information on one side with

show that the publisher possessing private information can always guarantee

a higher payoff for itself by misleading the other publisher through strategic

price manipulations during the history of the game. In addition, we show that

the competition always has an equilibrium. That is, the game always has a

value.

The remainder of this chapter is organized as follows: The next section provides

the relevant literature. Section 3.3 describes the model formulation and the results

for the SSE competition games. Section 3.4 discusses the model formulation and the

results for zero-sum repeated competition games of incomplete information on one

side and Section 3.5 concludes.
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3.2 Literature Review

There are two streams of literature related to our research. The first is the literature

on online advertising within the marketing area, which is quite extensive. Novak and

Hoffman (2000) provide an overview of advertising pricing schemes for the internet.

However, there is limited literature on analytical models for optimal pricing and

other decision making for a web publisher with an advertising operation. (For issues

faced by advertisers such as predicting audience for advertising campaigns see, e.g.,

Danaher (2007) and papers referenced therein.)

The second stream of literature is onmanagement science. The online advertising

research within this area is limited and there are few works directly related to online

advertising pricing.

In some of the earlier work, Mangàni (2003) compares the expected revenues from

the CPC and the CPM schemes using a simple deterministic model. At the same

time, Chickering and Heckerman (2003) develop a delivery system that maximizes the

CTR given inventory-management constraints in the form of advertisement quotas.

Both of these papers assume the prices are fixed. Unlike our work, none of these

works consider competition among web publishers.

There has been some recent literature on online search, the other section of the

online advertising market. Johnson et al. (2004) consider an empirical study to

examine the dynamics of online search behavior. In addition, Ghose and Yang (2009)

provide an empirical analysis of search engine advertising for the sponsored searches

on the internet. None of the results in these two papers can be extended to ours,

as they do not develop analytical models for the price decisions to be applicable in

a competition setting. Moreover, the nature of search advertising is fundamentally
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different from display advertising, as it is mainly based on using auctions that we do

not consider here.

Some researchers have focused on the relevant problem of pricing of goods and

services on the internet. Brynjolfsson and Smith (2000) and Clemons et al. (2002)

conduct empirical evaluations of price dispersions and price differentiations on the

internet. Bakos and Brynjolfsson (1999, 2000) study the optimal strategies of the

products bundling for a retailer selling products through the internet. Dewan et

al. (2000) and (2003) examine the problem of optimal product customization and

price strategy both in monopoly and in competition. Jain and Kannan (2002),

and Sandararajan (2004) analyzed the optimal pricing of information goods from

economics and a game theoretic standpoint. Although all of these papers consider a

variety of online pricing problems, none are applicable to our work, as the settings

in these papers are for quite different problems than websites competing together.

Some authors have considered the problem of a web publisher who not only

generates revenues from advertising but also from subscriptions. Baye and Morgan

(2000) develop a simple economic model of online advertising and subscription fees.

Prasad et al. (2003) model two offerings to viewers of a website: a lower fee with

more ads and a higher fee with fewer ads. Kumar and Sethi (2008) study the problem

of dynamically determining the subscription fee and the size of advertising space on

a website. They use optimal control theory to solve the problem and obtained the

optimal subscription fee and the optimal advertisement level over time. Unlike our

thesis, all these papers are focused on capacity management problems not price

decisions, and the price is assumed to be fixed. In addition, competition is not

considered in any of these papers.

Scheduling of ads on a website has also recently become a popular topic. Kumar et
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al. (2008) develop a model that determines how ads on a website should be scheduled

in a planning horizon to maximize revenue. They consider geometry and display

frequency as the two most important factors specifying the ads. Their problem

belongs to the class of NP-hard problems, and they develop a heuristic to solve it.

They also provided a good overview of other related papers on scheduling.

The game setting developed in this chapter to characterize the competing of web

publishers is new. There are few papers in the literature that consider competition

in online advertising. In fact, we could not find any paper that explicitly studies

this problem. However, we find more papers focusing on the issue of traditional

advertising. Erickson (1985) uses a dynamic model of advertising rivalry between

competitors in a duopoly and obtains analytical results for the case of pure market

share rivalry in a mature market. In addition, Erickson (1995) uses a dynamic

model of oligopolistic advertising competition, in which competitors are assumed to

make a series of single-period advertising decisions with salvage values attached to

achieved sales in each period. Espinosa and Mariel (1998) develop a dynamic model

of oligopolistic advertising competition. Their model examines predatory advertising

and informative advertising as particular cases. Using a differential game framework

and comparing the open-loop and feedback equilibria to the efficient outcome, they

find that for the informative advertising competition game, advertising levels are

closer to the collusive outcomes in a feedback equilibrium. In the case of predatory

advertising, expenditures are inefficiently high in a feedback equilibrium and the

open-loop solution is more efficient. None of these papers considers the impact of

competition on prices as decision variables.

Finally, as this chapter is still related to pricing and revenue management, we

end this section by a short review of related work in revenue management. For
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a comprehensive reference of the traditional revenue management models, we refer

the reader to the book by Talluri and van Ryzin (2004) (the book does not cover

the online setting). Savin et al. (2005) consider revenue management for rental

businesses with two customer classes. Although considering a different problem, they

have assumed uncertainty in the customers demand to their model, which has some

similarity to our model. Araman and Popescu (2009) also study revenue management

for traditional media, specifically broadcasting. Their model is concerned with how

to allocate limited advertising space between up-front contracts and the so-called

scatter market (i.e., a spot market) in order to maximize profits and meet contractual

commitments. Unlike our thesis, both of these papers are concerned with the capacity

decisions and price is not an issue of focus.

In the next section, we discuss about the main model.

3.3 The Steady-State Competition

Web publishers are often affected by intense competition that they need to consider

when planning their advertising operation. In this section, we extend our basic

model to incorporate competitive settings. For illustration purposes, we focus on

the case with two publishers (a duopoly) where each has one type of slots, i.e., each

website can be considered as a single webpage, which contains a single subsystem as

considered in Chapter 1. Advertisers wanting to post their ads arrive with rate λ and

consider both publishers. We model their choice of a publisher based on a Binomial-

logit (BNL) model, which is widely used in the management science literature (see,

e.g., Talluri and van Ryzin (2004a, 2004b) and Vulcano and van Ryzin (2010)).1

1Another possibility would be to consider the inverse demand functions, instead of choice models,
to characterize the competitive setting (see, e.g., De Miguel and Adida 2010 or Goyal and Netessine
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Let p1 and p2 denote the price per impression announced by Publishers 1 and

2, respectively. The two websites are differentiated by a set of attributes, e.g., the

price, the number of slots, and the number of impressions offered. The advertisers’

preference for these attributes could have them select a slot from the more expensive

website2.

The advertisers’ preference for the attributes is modeled by the coefficient vector

MT = (1/m1, 1/m2, 1/m3) > 0 (see Anderson et al. (1992)), where each compo-

nent indicates the preference weight that advertisers give to each attribute. The

probability that an advertiser will choose Publisher i can be expressed as

	i(A
T
1 , A

T
2 ) =

exp(−ATi M)
exp(−AT1M) + exp(−AT2M)

, (3.1)

where ATi = (pi, ni, xi) is the attributes’ vector with A
T
i (s), s = 1, 2, 3, referring to

the price, number of slots, and number of impressions.

When ms tends to zero for a certain attribute ATi (s), s ∈ {1, 2, 3}, the choice
probability in Equation (3.1) depends only on attribute ATi (s). Alternatively, when

ms is very high, the advertisers become quite insensitive to attribute ATi (s). In the

same way, if for all attributes, ms tends to infinity, the advertisers become indifferent

towards the websites’ features and choose either website with an equal probability.

Advertisers arrive with rate λ to consider both publishers. As soon as advertisers

have determined which publisher to approach based on the choice model described

in Equation (3.1), they check that publisher’s availability. If Publisher i’s website is

2007). Nevertheless, our initial exploration indicates that both approaches tend to yield equivalent
insights. In this section, we restrict our focus on the choice models, as used by Anderson (1992),
and leave the other approach for future research.

2Note that this setting is better suited for publishers serving advertisers that approach them
directly and are not willing to wait for display.
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fully occupied the arriving advertisers are rejected. We assume that each rejected

advertiser then chooses to approach Publisher j with probability αij or leaves with

probability 1−αij. Let ci be the marginal cost and Θi be the fixed cost for Publisher
i. Then Publisher i’s equilibrium profit rate function is given by

maxΠi
pi

= λ
i
(1− Pini(λ

i
))(pi − ci)−Θi, (3.2)

where λ
i
is the advertisers’ effective rate at Publisher i’s website.

When deriving λ
i
, we note that there are two streams of advertisers that approach

Publisher i. The first stream consists of advertisers who have initially selected Pub-

lisher i, which we denote byW 1
ii := λ	i(A

T
1 , A

T
2 ). Out of those S

1
ii :=W

1
ii(1−Pini(λ

i
))

have their ads displayed on Publisher i’s website, while the rest B1ii := W 1
iiP

i
ni
(λ
i
)

are rejected. Then, W 1
ij := αijB

1
ii of the rejected advertisers decide to approach Pub-

lisher j, and B1ij = W
1
ijP

j
nj
(λ
j
) of those are again rejected by Publisher j. Therefore,

W 2
ii = αjiB

1
ij of them reconsider Publisher i, while the rest leave. In short, W 2

ii is

the fraction of the W 1
ii advertisers who had initially selected Publisher i, but have

undergone a complete rejection loop and have arrived at Publisher i’s website for the

second time. Note that theoretically the same loop of procedures can be repeated

infinitely. Generally, in loop κ, we have

Sκii = W
κ
ii(1− Pini(λ

i
)), (3.3)

W κ
ii = λ	i(A

T
1 , A

T
2 )
(
αijαjiP

i
ni
(λ
i
)Pjnj(λ

j
)
)κ−1

, κ = 1, 2, ...

where Sκii is the fraction of the λ	i(A
T
1 , A

T
2 ) advertisers who had selected Publisher

i in the first loop and are eventually admitted into Publisher i’s system in loop κ.
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As a result, the overall number of advertisers in the first stream can be obtained as

Sii =

∞∑
κ=1

Sκii = λ	i(A
T
1 , A

T
2 )(1− Pini(λ

i
))

∞∑
κ=1

(
αijαjiP

i
ni
(λ
i
)Pjnj(λ

j
)
)κ−1

=
λ	i(A

T
1 , A

T
2 )(1− Pini(λ

i
))

1− αijαjiPini(λ
i
)Pjnj(λ

j
)
. (3.4)

The second stream of advertisers includes those who had initially chosen Publisher

j but finally had to place their ads on Publisher i’s website. Based on a similar

argument it can be shown that

Sκji = W
κ
ji(1− Pini(λ

i
)), (3.5)

W κ
ji = λ	j(A

T
1 , A

T
2 )P

j
nj
(λ
j
)
(
αijαjiP

i
ni
(λ
i
)Pjnj(λ

j
)
)κ−1

, κ = 1, 2, ...

where Sκji is the fraction of the λ	j(A
T
1 , A

T
2 ) advertisers who had first selected Pub-

lisher j, but made a contract with Publisher i in loop κ. Thus, the total number of

advertisers in the second stream is

Sji =

∞∑
κ=1

Sκji = λ	j(A
T
1 , A

T
2 )P

j
nj
(λ
j
)(1− Pjnj(λ

j
))

∞∑
κ=1

(
αijαjiP

i
ni
(λ
i
)Pjnj(λ

j
)
)κ−1

=
λ	j(A

T
1 , A

T
2 )P

j
nj
(λ
j
)(1− Pjnj(λ

j
))

1− αijαjiPini(λ
i
)Pjnj(λ

j
)

. (3.6)

Figure 3.1 illustrates the interaction of the publishers in loop κ. The following

proposition summarizes this result.3

Proposition 42 In a two publisher competitive setting, the effective advertisers’
3Note that here we consider the steady-state equilibrium (SSE), which tends to be different from

the equilibrium obtained through a one-stage game. Clearly, in the one shot game, the rejected
advertisers cannot approach the alternative publisher as this would require the game to be repeated.
Nevertheless, the SSE considers the behavior of the publishers in the limit when the game is played
infinite times.
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Figure 3.1: An illustrative presentation of the Publishers’ interaction in loop κ. From
the W κ

ij = αijB
κ
ii advertisers approaching Publisher j, (1 − αji)Pjnj(λ

j
)αijB

κ
ii leave

the game while the rest αjiPjnj(λ
j
)αijB

κ
ii consider approaching Publisher i as W

κ+1
ii .

arrival rate at Publisher i’s website in equilibrium is λ
i
(1− Pini(λ

i
)) with λ

i
given by

λ
i
= Sii + Sji =

λ(	i(A
T
1 , A

T
2 ) +	j(A

T
1 , A

T
2 )αjiP

j
nj
(λ
j
))

1− αijαjiPini(λ
i
)Pjnj(λ

j
)

, (3.7)

where λ is the rate at which advertisers consider both publishers and αij (αji) is

the fraction of the rejected advertisers by Publisher i (Publisher j) who approach

Publisher j (Publisher i).

We note that Publisher i’s profit is a function of Pini(λ
i
) and pi. However, Pini(λ

i
)

is a function of λ
i
, which is again a function of Pini(λ

i
) and pi. Providing analytical

results for these complex relationships is beyond the scope of this chapter. Instead,

we provide a numerical analysis that reveals interesting insights about the strate-

gic behavior of the publishers. Table 1 shows the results of the impact of several

parameters on the optimal prices, the optimal profit rates, and other factors in the

competition at equilibrium. We found the results to be consistent throughout vari-

ous sets of parameter values that we considered. For illustration purposes, the choice
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Dependent variable

Indep. var. pi pj Πi Πj λ
i

λ
j

Pini Pjnj Li Lj
αij ↗ ↗ ↗ ↗ ↗ ↘ ↗ ↘ ↗ ↘
xi ↗ ↗ ↗ ↗ ↘ ↗ ↗ ↗ ↗ ↗
ni ↘ ↘ � ↘ ↗ ↘ ↘ ↘ ↘ ↘
μi ↘ ↘ � ↘ ↘ ↘ ↘ ↘ ↘ ↘
ci ↗ ↗ ↘ ↗ ↘ ↗ ↘ ↗ ↘ ↗

Table 3.1: The effect of an increase in each of the indep. variables on the dep.
variables

model considered has price as a single attribute.

From Table 3.1 it can be seen that an increase in the fraction αij, the proportion

of advertisers rejected by Publisher i that approach Publisher j, leads to an increase

in both publishers’ profits. The reason for this behavior is that an increase in αij

increases the advertisers’ arrival rate at Publisher j’s website. Publisher j responds

to this demand change by increasing its price. The increase in Publisher j’s price

will affect the advertisers’ choice decisions described by Equation (3.1) in favor of

Publisher i. In order to respond to the consequent demand increase, Publisher i in-

creases its price, which leads to more advertisers choosing Publisher j. This feedback

cycle is repeated until the steady-state equilibrium is reached. It can be seen that at

equilibrium4, the prices as well as profits of both publishers increase. Furthermore, a

counter-intuitive observation is that although Publisher i sends more advertisers to

Publisher j’s website, Publisher j’s website becomes emptier at the limit. In addi-

tion, the profit increase for both publishers suggests that the cooperation of Publisher

i with its competitor (e.g., by recommending Publisher j to its rejected advertisers)

not only benefits Publisher j but also Publisher i itself.

In addition, Table 3.1 indicates that an increase in the number of impressions for

Publisher i leads to an increase in both publishers’ prices. This is because the increase

4Given that the equlibrium exists for the game.

188



makes Publisher i’s system more congested. Naturally, Publisher i responds to this

issue by increasing its website’s price as observed in the monopolistic case. However,

Publisher i’s price increase will affect the advertisers’ choice decisions in favor of

Publisher j, which leads to an increase in its website’s demand. As a consequence,

Publisher j’s response would be to increase its price. The eventual outcome of

these interactions is that both the equilibrium prices and the profits increase. From

this observation, it can be inferred that larger contracts (in terms of number of

impressions) with advertisers, not only benefit the publisher offering them but also

its competitor.

Furthermore, we observe that increasing the number of slots on Publisher i’s

website has an interesting impact on its profit. When Publisher i increases the

number of slots, it decreases its price to attract more advertisers, which leads to

fewer advertisers approaching Publisher j. To respond to its demand reduction,

Publisher j lowers its price, which results in profit loss. However, we note that the

increase in the number of slots has a non-obvious impact on Publisher i’s own profit,

which depends on the current number of slots on Publisher i’s website, and the

number of slots added. For instance, if many slots are added both publishers’ profits

can decrease. Generally, this observation suggests that competing with publishers

having many ad slots can be less profitable for the competitors as more slots may

not mean additional profit due to the subsequent price war between the publishers.

Similarly, we observe that an increase in Publisher i’s number of viewers (i.e.,

web traffic) has a non-obvious impact on its profit. This is because an increase

in the number of viewers for Publisher i, enables it to serve more advertisers. As

a result, the number of rejected advertisers who consider approaching Publisher j

would decrease. In response to the decreased demand, Publisher j reduces its price
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leading to more advertisers choosing its website. In addition, the decrease in price

causes Publisher j’s profits to decline. To respond to the decrease in its demand,

Publisher i reduces its price. This interaction continues until the game reaches an

equilibrium, where the publishers do not change prices anymore. We note that the

impact of the increased traffic on Publisher i’s own profit is non-obvious. Generally,

the profit function seems to be concave with respect to the viewers’ arrival rate. That

is, depending on the value of other decision factors, a slight increase in Publisher i’s

website traffic may increase its profit. However, a dramatic increase can lead to a

loss for both publishers. This observation suggests that in the competition setting

more web traffic may not mean more profit for a publisher. In addition, a substantial

traffic increase for one of the publishers may lead both publishers to lose profit as a

consequence of a price war.

Finally, as can be seen from the table, an increase in Publisher i’s marginal cost

will cause an increase in the equilibrium prices for both publishers with the difference

that Publisher i loses profit, while at the same time Publisher j gains more. The

reason for this behavior is that in response to the increase in its cost, Publisher i

raises its price to be able to maintain its profitability. However, this price increase

causes more advertisers to choose Publisher j, leading it to increase its price and

improve its overall profit.

3.4 Repeated Competition of Incomplete Infor-

mation on One Side

Finding analytical results for the SSE game is quite difficult. As a result, in this

section, we consider an alternative game setting that, while similar to the SSE com-
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petition, is stylized enough to provide us with analytical results. In our analysis, we

limit our focus on two identical publishers and zero-sum competitions. In a zero-sum

competition if one publisher makes a profit by selling impressions to an advertiser,

the other publisher loses exactly the same amount of revenue as the lost opportunity

cost. As in the previous section there are two publishers, Publisher 1 and Publisher

2. Nature chooses a state λ ∈ Λ according to a commonly known probability on Λ,
and the first publisher, but not the second publisher, is informed about the nature’s

choice. After each stage of the game, both publishers are informed of each others’

actions. The game is repeated infinitely and the chosen state of λ remains constant

throughout play. Although the chosen state λ, along with actions of players, deter-

mines the stage payoffs, during the play the second publisher learns nothing about

its correct payoff and how far its pricing decision is from being optimal.

This can be represented by an infinite game tree where nature takes the first

action of choosing λ and afterward never takes a second action. The information set

of the second publisher is determined by the past behavior of both publishers and

the information set of the first publisher is determined by the past behavior of both

publishers and by choice of nature.

The Publishers Behavior Strategies In all states of nature, the first and

second publisher have the same finite countable sets of CPM prices to choose from

as their actions. The two price sets are denoted by P1 and P2 respectively5, and we
assume that |P1| and |P2| are both at least two. A behavior strategy of Publisher
1 is an infinite sequence of P1 = (α1, α2, ...) such that for each l, αl is a mapping

from Λ × (P1 × P2)l−1 to Δ(P1), the publisher’s mixed strategy space (i.e., the set
5Note that unlike the previous section the prices are not continuous but the price sets are

assumed to be countable and finite. This assumption is necessary for tractability.
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of all probability distributions on the set P1). A behavior strategy for Publisher 2
is an infinite sequence P2 = (β1, β2, ...) such that for each l, βl is a mapping from

(P1 × P2)l−1 to Δ(P2), the set of all probability distributions on the set P2.

The Publishers Payoff Functions Define the set of finite play-histories of

length l to be Hl := Λ× (P1×P2)l, and define Hλ
l to be the subset {λ}× (P1×P2)l.

For every h ∈ Hl with h = (λ, p11, p
1
2, ..., p

l
1, p

l
2) define

g1(h) =
1

n

n∑
k=1

π1(p
k
1, p

k
2) and g2(h) =

1

n

n∑
k=1

π2(p
k
1, p

k
2),

where πi(pk1, p
k
2), i = 1, 2, is the profit (i.e., payoff) of Publisher i at stage k when the

state of the nature is λ ∈ Λ and Publisher 1 has selected pk1 ∈ P1 and Publisher 2 has
chosen pk2 ∈ P2. As the game is zero-sum, Publisher i’s profit is incurred on Publisher
j as a penalty or lost opportunity cost. That is at each stage, π1(pk1, p

k
2) = π(p

k
1, p

k
2) =

−π2(pk1, pk2). Let gn(h) = (g1(h), g2(h)) be the vector of the average payoffs after n
stages of interactions. That is,

gn =
1

n

n∑
k=1

π(k)(pk1, p
k
2),

where π(k) = (π1, π2). Next, we define the value of the game.

TheMin-Max Function For every probability distributionQ = (q1, ..., q|Λ|) ∈
Δ(Λ) we define the matrix A(Q) =

∑
λ∈∗ q

λAλ, where Aλ is a |P1| × |P2| payoff
matrix of Publisher 1 when the state of the nature is λ ∈ ∗. We define the function
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a∗ : Δ(Λ)→ R by

a∗(Q) := max
σ∈Δ(P1)

min
τ∈Δ(P2)

σA(Q)τ = min
τ∈Δ(P2)

max
σ∈Δ(P1)

σA(Q)τ

The function values a∗(Q) represent the value of the game to Publisher 1 when both

publishers believe that Q is the probability distribution on the state of advertisers’

arrival rate into the competition setting. For the rest of analysis, we need to define

cav and vex of a function.

Concave and Convex For any real valued function f on a convex space C

let cav(f) (respectively vex(f)) be the smallest concave function (largest convex

function) larger or equal to (smaller or equal to) the function f . Given a real valued

function f on C let Gf be the graph of f , namely Gf := {(x, y)| y = f(x)}. cav(f)
and vex(f) can be obtained in the following way: Let Uf := {(x, y)| y ≥ f(x)}
and Lf := {(x, y)| y ≤ f(x)}. For any set S in the convex space let Co(S) be the
convex hull of S. cav(f(x)) can be defined with Co(Lf ) and vex(f(x)) by Co(Uf ),

with cav(f(x)) = sup{y| (x, y) ∈ Co(Lf )} and vex(f(x)) = inf{y| (x, y) ∈ Co(Uf )}.
Furthermore, if C is a subset of a finite dimensional Euclidean space then for any

x ∈ C there will be a finite subset S ⊆ C with some α ∈ Δ(S) such that x =∑s∈S

αss and cav(f(x)) =
∑

s∈S αsf(s).

The next proposition ensures that in the two publishers game, for any probability

distribution Q ∈ Δ(Λ) Publisher 1 can guarantee gaining a payoff of cav(a∗(Q)).

Proposition 43 For any probability Q ∈ Δ(Λ) in the two publishers competition
Publisher 1 has a behavior strategy that guarantees a payoff of cav(a∗(Q)) in the

competition where Q is the probability on the total advertisers’ arrival rates states
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determining nature’s choice.

Proof. As explained above for a point x = Q belonging to the set Δ(Λ) there

exists a finite subset S ⊆ Δ(Λ) with some α ∈ Δ(S) such that Q =
∑

s∈S αss

and cav(a∗(Q)) =
∑

s∈S αsa
∗(s). Note that each point s refers to a value that

Publisher 1 reports to Publisher 2 in place of the true value of λ. At the start of

each stage of the interactions Publisher 1 chooses a value s ∈ S according to the
probability distribution α = (αs; s ∈ S). Once an s is chosen Publisher 1 reports
that value (falsely) as the value of λ and plays according to strategy optimal in

the game A(s), which makes it gain a∗(s) for that stage. In this way, using the

probability distribution α at the beginning of each stage, Publisher 1 guarantees

itself cav(a∗(Q)) =
∑

s∈S αsa
∗(s).

For the rest of the analysis, we argue that cav(a∗(Q)) is in fact the value of the

repeated competition between the two publishers. In order to consider this issue,

first we need to define the concept of Approachability.

Definition 44 A set C is approachable for Publisher 1 with a behavior strategy σ if

for all ε > 0 there exists an N such that for all behavior strategies τ for Publisher 2

and n ≥ N it follows that

Eσ,τ (d(C, gn)) < ε,

where d is the Euclidean distance.

A set C is excludable by Publisher 2 with a behavior strategy τ if there exists some

δ > 0 and an N such that for all choices σ of behavior strategies for Publisher 1 and

n ≥ N
Eσ,τ (d(C, gn)) > δ.
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A set C is approachable for Publisher 1 if there exists a behavior strategy σ for

Publisher 1 such that C is approachable for Publisher 1 with σ. For any probability

distributions σ ∈ Δ(P1) and τ ∈ Δ(P2) define

R2(p1) : = Co({
∑
p1∈P1

σp1π(p1, p2) | p2 ∈ P2}), ∀p2 ∈ P2,

R1(p2) : = Co({
∑
p2∈P2

τ p2π(p1, p2) | p1 ∈ P1}), ∀p1 ∈ P1.

The next proposition states an important result about approachability, which is

needed for the Publishers’ competition.

Theorem 45 (Blackwell 1956) Let C be a closed and convex subset of Rn. C is

approachable if and only if for all τ ∈ Δ(P2) it holds that

C ∩R1(p2) �= ∅.

If C is not approachable then letting τ be any choice Δ(P2) with C ∩ R1(p2) = ∅
the set C is excludable with a behavior strategy τ for all histories of the Publishers

competition game.

Blackwell’s theorem is quite useful in its application in the following proposition.

Proposition 46 Let y ∈ R|Λ| be a (payoff) vector for Publisher 2 such that y.

Q ≥a∗(Q) for all Q ∈ Δ(Λ). Then the subset Cy = {v | vλ ≤ yλ, ∀λ ∈ Λ} is
approachable by Publisher 2.

Proof. According to Blackwell’s Theorem we need to show for any fixed mixed

strategy σ ∈ Δ(P1) of the one-stage game for Publisher 1 that Cy ∩R2(σ) �= ∅. This
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is equivalent to showing that there is a mixed strategy τ ∈ Δ(P2) such that for all
σAλτ t ≤ yλ for all λ ∈ Λ.

With σ ∈ Δ(P1) fixed, we can construct a new zero-sum game played between

Publisher 2 and Nature. Nature chooses a probability Q ∈ Δ(Λ) and Publisher 2
chooses a τ ∈ Δ(P2). If Publisher 2 chooses a price p2 ∈ P2 and Nature chooses
the advertisers’ arrival rate λ ∈ Λ then the direct payoff for Publisher 2 is yλ.

However, as Publisher 2 should pay σAλetp2 to Nature, his overall payoff would be

yλ−σAλetp2 ,where the unit vector etp2 implies that Publisher 2 selects the price p2 with
probability one, while the rest are selected with zero probability. By y.Q ≥a∗(Q)
for all Q ∈ Δ(Λ) we know that for any choice Q ∈ Δ(Λ) by Nature there is a price
p2 ∈ P2 such that y.Q ≥ σA(Q)etp2 which means that the min-max value of the game
for Publisher 2 (between Publisher 2 and Nature) is at least zero. By the min-max

theorem there must be a τ ∈ Δ(P2) such that for all λ ∈ Λ, yλ−σAλτ t ≥ 0, meaning
that σAλτ t ≤ yλ.

The next proposition summarizes the results obtained in this section.

Proposition 47 A zero-sum infinitely-repeated and undiscounted competition of in-

complete information on one side between two web publishers has a value and this

value is cav(a∗(Q)), where Q ∈ Δ(Λ) is the distribution on the advertisers’ arrival
rate, λ, into the competition setting governing Nature’s choice.

Proof. By Proposition 43 the min-max value is at least cav(a∗(Q)). By Proposition

46 the min-max value is no more than cav(a∗(Q)).
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3.5 Conclusion

In this chapter, we considered the interactions of two web publishers in a competi-

tive setting and provided various interesting insights about their strategic behavior at

equilibrium. We first studied the steady-state equilibrium (SSE) game. As mentioned

earlier, the equilibriums obtained in steady-state games tend to be significantly more

general than the equilibriums obtained merely in single-stage games. The reason for

this is that by considering steady-state equilibriums, we study the strategic behavior

of the publishers in the limit when the game is repeated several times. Therefore,

the publishers learn from the past and become more sophisticated decision makers.

One of the insights derived from the SSE game is that when two publishers compete

in the same market, the optimal managerial policy for each of them is to choose a

mixture of cooperation and competition rather than a pure competition. Further-

more, our observations indicated that making larger contracts with advertisers (with

more impressions), not only benefits the publisher but also its competitor. That

is, if a publisher offers larger contracts the revenue of both publishers increase at

equilibrium.

Our examination of the SSE game also suggested that competing with a publisher

that has more slots on its website, may be less profitable for its competitor. That is,

an increase in the number of slots in a publisher’s system will lead its competitor’s

revenue to decrease. However, we note that the increase in the number of slots has

a non-obvious impact on the publisher’s own revenue, which depends on the current

number of slots on the website, and the number of slots added. For instance, if

many slots are added both publishers’ revenues can decrease. We observe a similar

behavior with respect to the web traffic.

197



Although the SSE game is quite attractive to analyze, obtaining tractable results

for it appears to be overly difficult. As a result, we considered an alternative similar

game, namely, the zero-sum repeated competition of incomplete information on one

side between the two publishers. This game tends to be more stylized than the SSE in

some aspects. However, it is more general in some other. For instance, it deals with

quite general payoff functions. In addition, it provides interesting tractable analytical

results. We showed analytically that the publisher having private information about

the market can always guarantee a higher payoff for itself by adopting a partially

revealing strategy compared to be fully revealing or non-revealing. As a future

research, the model introduced for the publishers’ competition can be extended to

zero-sum repeated competition of incomplete information on both sides, where the

market is characterized by two pieces of information, each of which is private only to

one of the publishers. One can also examine the none-zero-sum repeated competition

of incomplete information on one (both) side(s).
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Chapter 4

The Optimality Conditions for

Continuous Demand Distributions

With Independent Increments

4.1 Introduction

This section does not discuss about online advertising but is still related. The central

focus of this chapter is finding the optimality conditions for the customers (in on-

line advertising advertisers) demand process when the demand is not Poisson; rather

follows any continuous distribution. Modeling the correct demand distribution of

customers is of significant importance as the type of the demand process can con-

siderably impact the suggested policies. A check of real demand processes shows

that the customers’ demand process can be frequently non-Poisson for a variety of

reasons. For instance, one of the needed assumptions made in the Poisson process is

that the average of the demand is equal to its variance. Nevertheless, in reality this

199



assumption does rarely hold.

In this chapter, we consider the optimality condition applied by Gallego and van

Ryzin (1994) to characterize Poisson demands with finite time horizon as well as

the optimality condition introduced by Araman and Caldentey (2009) for Poisson

demands with a stopping (or infinite) time horizon. We extend these two demand

optimality conditions from Poisson to any arbitrary continuous distribution with

mean λt and variance σ2t at time t. We consider both finite and stopping time

horizons for the demand. We show that in the both extensions an extra second order

term appears in the optimality condition. This extra term explains the adjustment,

which is needed when the demand is continuous.

4.2 Optimality Condition for a Finite Determin-

istic Time Horizon

Consider that the stochastic demand process Xt follows an arbitrary continuous

distribution C with mean λt(Xt, ut, t)t, and variance σ2t (Xt, ut, t), i.e.,

Xt ∼ C(λt(Xt, ut)t, σt(Xt, ut)
√
t),

where ut is the control variable1. Then, the total revenue gained through the demand

from the initial time t = 0 to the terminal time t = T is

J∗(x, T ) = sup
ut

EX [

∫ T

0

f0(Xt, ut)dXt], (4.1)

1For instance, at the simplest case where λt(ut) = ut we aim to control the average of demand.
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where f0(Xt, ut) is the seller’s revenue associated with the stochastic demand Xt,

0 ≤ t ≤ T. Clearly, Xt can be re-expressed as Xt = λt(Xt, ut)t+ σt(Xt, ut)X̂t, where

X̂t is a new process with the mean scaled to zero and variance t. Thus, based on

Doob—Meyer’s decomposition theorem (e.g., see Protter 2005), the process dXt can

be uniquely expressed as

dXt = λt(Xt, ut)dt+ σt(Xt, ut)dX̂t, (4.2)

where the increment process dX̂t has the mean 0 and variance dt. In order to show the

reason that the variance of the increment process dX̂t is equal to dt, i.e., var[dX̂t] =

dt, we assume that the process X̂t has independent increments, i.e., cov(dX̂t, dX̂s) =

0 for any t �= s. Next, we fix an arbitrarily fine partition {t0, t1, ..., tn} of the interval
[0, T ], say into n subintervals all of equal lengthΔt withΔt→ 0, so that ti = t0+iΔt.

We shall call Δt the mesh of the subdivision. Furthermore, we note that dX̂t =

ΔX̂t = X̂t+Δt − X̂t with Δt → 0. Let us write ν the common value of the variance

of the increment ΔX̂t = X̂t+Δt − X̂t. Thus, ν = var[ΔX̂t] = E[(ΔX̂t)
2]− (E[ΔX̂t])

2

and hence since E[ΔX̂t] = 0, we have for all t

ν = E[(ΔX̂t)
2].

In addition, we recall that that the formula for the variance of the sum of two random

variables A and B when they are independent, namely

var(A+B) = var(A) + var(B) + 2cov(A,B)

= var(A) + var(B),
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which means that the variance is additive. We thus have by the additivity of variance

over the independent increments that

var[(X̂T − X̂0)] =

n∑
i=1

var[(X̂T−iΔt − X̂T−(i+1)Δt)]

=
n∑
i=0

var[ΔX̂ti ] =

n∑
i=0

E[(ΔX̂ti
)2]

= nν = vT/Δt.

If in the limit as Δt→ 0, the limiting random variable X̂t is to have a finite variance

at t = T and t = 0, the limit of vT/Δt must be also finite. This conclusion, which

results from the independence of increments ΔX̂ti and the requirement of finite

variance at each time, leads to the natural following standardization of the limiting

process. A straightforward verification shows that if

lim
var(ΔX̂t)

Δt
→ 1, as Δt→ 0

then the process X̂t has finite variance under C and also var(X̂t) = t for any arbitrary

value of t. As a result var(dX̂t) = dt.

Next, we consider that a straightforward application of (4.2) to the optimal rev-

enue function (4.1) gives

J∗(x, T ) = sup
ut

EX

⎛⎜⎝ ∫ T
0
f0(Xt, ut)λt(Xt, ut)dt

+
∫ T
0
f0(Xt, ut)σt(Xt, ut)dX̂t)

⎞⎟⎠ . (4.3)

Note that in the above formula, since dX̂t is a martingale with E[dX̂t] = 0 and

f0(Xt, ut)σt(Xt, ut) is bounded, the term
∫ T
0
f0(Xt, ut)σt(Xt, ut)dX̂t) is a martingale

transform of the process X̂t and hence is itself a martingale. Therefore its expected
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value is zero. That is,

EX [

∫ T

0

f0(Xt, ut)σt(Xt, ut)dX̂t)] = 0. (4.4)

Hence, the revenue function can be re-expressed as

J∗(x, T ) = sup
ut

EX [

∫ T

0

f0(Xt, ut)λt(Xt, ut)dt], (4.5)

where x = X0. Our goal is now to derive the optimality conditions from (4.5). First

of all, from (4.5), we establish that

J∗(x, T ) = sup
ut

EX

⎛⎜⎝ ∫ Δt
0
f0(Xt, ut)λt(Xt, ut)dt

+
∫ T
Δt
f0(Xt, ut)λt(Xt, ut)dt

⎞⎟⎠ . (4.6)

The essential observation is that, using the Mean Value Theorem, the expected value

EX [
∫ Δt
0
f0(Xt, ut, t)λt(Xt, ut, t)dt] can be expressed as

EX [

∫ Δt

0

f0(Xt, ut)λt(Xt, ut)dt] = f0(x, u)λ(x, u)Δt+ o1(Δt), (4.7)

where u = us is a control function defined for 0 ≤ s ≤ Δt, and the last term o1(Δt)

is a function of Δt that has the property that o1(Δt)/Δt→ 0 as Δt→ 0. Now, the

crucial use of the law of repeated expectations (Tower property) gives

J∗(x, T ) = sup
ut

⎛⎜⎝ f0(x, u)λ(x, u)Δt+

EXEX,Δt[
∫ T
Δt
f0(Xt, ut)λt(Xt, ut)dt] + o1(Δt)

⎞⎟⎠ . (4.8)

In addition, an easy application of (4.7), and the change of variable θt = t −Δt to
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the second term EX,Δt[
∫ T
Δt
f0(Xt, ut)λt(Xt, ut)dt] gives

EX,Δt[

∫ T−Δt

0

f0(Xθ+Δt, uθ+Δt)λθ+Δt(x, uθ+Δt)dθt]

= J(XΔt, T −Δt) = J(x−ΔX,T −Δt). (4.9)

The key observation in obtaining the second equality is noting thatXΔt = X0−ΔX =

x−ΔX . Thus, the optimality condition reduces to

J∗(x, T ) = EX [f0(x, u∗)λ(x, u∗)Δt+ J∗(x−ΔX,T −Δt) + o1(Δt)], (4.10)

where u∗ belongs to the optimal control trajectory. Now, by applying the two di-

mensional Taylor’s expansion to J∗(x − ΔX,T − Δt) and replacing in (4.10), we
find

J∗(x, T ) = EX

⎛⎜⎝ f0(x, u
∗)λ(x, u∗)Δt+ o1(Δt) + J∗(x, T )−

J∗′T Δt− J∗′x ΔX − 1
2
J∗

′′
x (ΔX)

2 + o2(Δt)

⎞⎟⎠ . (4.11)

Denoting o1(Δt) + o2(Δt) by o(Δt), we are now ready to invoke (4.2) in order to

simplify (4.11) as

0 = EX

⎛⎜⎝ f0(x, u
∗)Δt− J∗′T Δt− J∗′x λ(x, u∗)Δt− J∗′x ΔX̂

−1
2
J∗

′′
x (λ(x, u

∗)Δt+ σ(x, u∗)ΔX̂)2 + o(Δt)

⎞⎟⎠ . (4.12)

Note that an essential observation is that E[(ΔX̂)2] = var[ΔX̂] = Δt, which reduces

(4.12) to

0 = f0(x, u
∗)Δt− J∗′T Δt− J∗

′
x λ(x, u

∗)Δt− 1
2
J∗

′′
x σ

2(x, u∗)Δt+ o(Δt). (4.13)
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Finally, dividing both sides of (4.13) by Δt and passing to the limit as Δt → 0+

gives optimality condition as follows:

J∗′T = f0(x, u
∗)− J∗′x λ(x, u∗)−

1

2
J∗

′′
x σ

2(x, u∗).

4.3 Optimality Condition for a Stopping Time

In this section, we examine an extended version of the optimality condition considered

by Gallego and van Ryzin (1994), which was applied by Araman and Caldentey

(2009) for characterizing Poisson demands when the time horizon is a stopping time2.

In order to start, we consider the modified revenue function introduced by Araman

and Caldentey (2009) as follows

J∗(x) = sup
ut,θ

EX,τ [

∫ τ

0

e−rtf0(Xt, ut)dt+ e
−rτR]. (4.14)

dXt = λt(Xt, ut)dt+ σt(Xt, ut)dX̂t

τ θ(x) = inf{t ≥ 0 : Xt = θ}

In the above formula x = X0 is the realization of the initial demand’s value at time

t = 0. In addition, τ = τ θ(X0) = τ θ(x) is the stopping time by reference to the

underlying stochastic demand process Xt reaching a prescribed level θ, which is to

be chosen optimally. We suppose that X0 = x �= θ. r is the discount factor, and

R is the salvage value received by the seller at the stopping time τ θ(x). With an

2Note that considering an infinite time horizon follows the same lines of proof with the stopping
time horizon and leads to the same optimality condition.
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argument similar to the one used in the previous section, we find that

J∗(x) = sup
ut,θ

EX,τ

⎛⎜⎝ f0(x, u)Δt+ o1(Δt)

+
∫ τ
Δt
e−rtf0(Xt, ut)dt+ e

−rτR

⎞⎟⎠ . (4.15)

To obtain (4.15), we used the Mean Value Theorem as stated in (4.7). Now, an easy

change of variable h = t−Δt gives

J∗(x) = sup
ut,θ

⎛⎜⎝ f0(x, u)Δt+ o1(Δt)

+EX,τ [
∫ τ−Δt
0

e−(h+Δt)rf0(Xh+Δt, uh+Δt)dh+ e
−rτR]

⎞⎟⎠ . (4.16)

Setting τ �
= τ − Δt, Xh

�
= Xh+Δt, uh

�
= uh+Δt, and using the law of repeated

expectations (Tower property), we find that

J∗(x) =

⎛⎜⎝ f0(x, u
∗)Δt+ o1(Δt)

+e−rΔtEX,τEX,τ [
∫ τ∗
0
e−hrf0(Xh, uh)dh+ e

−rτ∗R]

⎞⎟⎠ , (4.17)

where u∗ is the optimal control trajectory and τ ∗ = inf{t ≥ 0 : Xt = θ∗} is the
stopping time when the stochastic demand process Xt reaches the prescribed optimal

level θ∗. Furthermore, it is easy to observe that

J∗(XΔt) = EX,τ [

∫ τ∗

0

e−hrf0(Xh, uh)dh+ e
−rτ∗R].

Thus, replacing in (4.17) gives

J∗(x) = f0(x, u∗)Δt+ o1(Δt) + e−rΔtEX,τ [J∗(XΔt)] (4.18)
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The essential observation in (4.18) is that

XΔt = X0 −ΔX = x−ΔX, (4.19)

τ(XΔt) = τ(x)−Δt = τ , (4.20)

e−rΔt = 1− rΔt+ o2(Δt). (4.21)

Applying (4.19)-(4.21) in (4.18), we find

J∗(x) = f0(x, u∗)Δt+ o1(Δt) + (1− rΔt+ o2(Δt))EX,τ [J∗(x−ΔX)].

A straightforward application of one dimensional Taylor’s expansion and summariz-

ing the sum of all error terms as the single term o(Δt) gives

J∗(x) =

⎛⎜⎝ f0(x, u
∗)Δt+ o(Δt)

(1− rΔt)EX,τ [J∗(x)− J∗′(x)ΔX + 1
2
J∗

′′
(x) (ΔX)2]

⎞⎟⎠ .
Noticing that E[ΔX] = λ(x, u)Δt and var[ΔX] = σ2(x, u)Δt, J∗(x) reduces to

J∗(x) =

⎛⎜⎝ J∗(x) + f0(x, u∗)Δt− J∗(x)rΔt−
J∗′(x)λ(x, u)Δt+ 1

2
J∗

′′
(x)σ2(x, u)Δt+ o(Δt)

⎞⎟⎠ .
Finally, dividing both sides by Δt and passing to the limit as Δt → 0+ we obtain

the optimality condition as follows

0 = f0(x, u
∗)− J∗(x)r − J∗′(x)λ(x, u) + 1

2
J∗

′′
(x)σ2(x, u).
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4.4 Conclusion

In this chapter, we extended the optimality condition used by Gallego and van Ryzin

(1994) to characterize Poisson demands with finite time horizon and also the opti-

mality condition used by Araman and Caldentey (2009) for Poisson demands with

a stopping (or infinite) time horizon to any arbitrary continuous distribution with

mean λt and variance σ2t at time t. As observed, in the both extensions, an extra

second order term appears in the optimality condition, which is a function of the

demand’s variance. This extra term explains the “adjustment” needed when the

demand process becomes continuous.
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