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Abstract

Borrowers obtain liquidity by issuing securities backed by the current period payoff and resale

price of a long-lived collateral asset, and they are privately informed about the payoff distribution.

Asset price can be self-fulfilling: a higher asset price lowers adverse selection and allows borrowers to

raise greater funding, which makes the asset more valuable, leading to multiple equilibria. Optimal

security design eliminates multiple equilibria, improves welfare, and can be implemented as a repo

contract. Persistent adverse selection lowers debt funding, generates volatility in asset prices and

exacerbates credit crunches. The theory demonstrates the role of asset-backed securities on stability

of market-based financial systems.
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1 Introduction

In this paper, we propose a theory of security design when the underlying asset is long-lived and traded,

and both the current period payoff and the resale price of the asset are used to back the optimally chosen

securities. There is asymmetric information about asset quality: asset owners are better informed about

the current period payoff and this information advantage might be short-lived or persistent. There are

also gains from trade in the style of Lagos and Wright (2005): asset-backed securities are used as a

means of payment for asset owners to fund some outside consumption or investment opportunity. In

our model, due to its collateral role, the entire cum-dividend value of the asset creates gains from trade.

Consequently, the severity of the adverse selection problem depends on the cum-dividend value of the

asset, which activates price feedback: a higher asset price in the future lowers the adverse selection

today which allows for more asset-backed security sales today, which in turn justifies the higher future

asset price. In the model, security design and asset price are jointly determined in equilibrium. In

this economic setting, we find that when the set of available securities is restricted, there are multiple

equilibria with destabilizing self-fulfilling prices. Optimal security design eliminates multiplicity and

leads to a unique Pareto-optimal equilibrium where the resale price of the asset is high and the sale of

securities backed by the asset raises more funding.

The price feedback mechanism in our paper is empirically relevant because an increasing number of

markets (exchange or over-the-counter) are being created to trade a variety of financial assets. Resale

prices of these financial assets become collateralizable and constitute an important component of the col-

lateral value for borrowing obligations. Financial institutions are becoming more dependent on markets

to assess the collateral values when intermediating capital flows.1 For example, short-term asset-backed

borrowing facilities including repos or repo-like products are widely adopted as financing instruments.

Such securities transform marketable collaterals with heterogeneous levels of quality, opacity and infor-

mation friction to immediate funding, and thereby increase funding liquidity and fuel economic growth.

Currently, repo financing remains a crucial source of short-term funding for financial institutions, es-

timated to have an outstanding notional amount of $12 trillion globally (CGFS, 2017). At the same

time, the rise of the market-based financial system has sown the seeds of instability: some short-term

borrowing facilities such as asset-backed commercial papers (ABCPs) experienced runs during the Great
1According to the Financial Stability Board report on the global shadow banking sector (FSB, 2019), assets under the

market-based financial intermediation grew faster than the assets under traditional banks (characterized by the originate-

and-hold business models) from 2008 to 2018, and reached 48% of total financial assets at the end of 2018. By the end of

2018, the amount of market-based financial intermediation stood at $184 trillion compared to $148 trillion for banks.
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Recession. Our theory offers a framework for understanding the potential fragility in the market-based

financial system with widespread securitization.

In our model, borrowers value liquidity more than investors, which leads to gains from trade. Bor-

rowers face two commonly observed frictions in raising liquidity. First, they cannot promise to pay

back, and thus cannot borrow from investors unless the promise is made credible. To overcome this

lack-of-commitment problem and make promises credible, borrowers sell securities backed by the value

of a long-lived collateral asset which includes the current period payoff and the endogenous resale price.

Second, there is asymmetric information about the quality of the collateral asset which leads to adverse

selection. This friction limits the collateral asset’s effectiveness in raising liquidity. Under these two

assumptions on the frictions in the economy, we find that a dynamic price feedback emerges in our

model. When the set of available financial instruments is restricted, this dynamic feedback loop leads

to multiple equilibria in liquidity provision.

To illustrate how this dynamic price feedback leads to multiplicity, we first consider a baseline case

where borrowers are restricted to selling an equity claim backed by the collateral asset in the security

market to raise liquidity.2 The quality of the collateral asset (captured by the distribution of its dividend

payoff) is either high or low and varies period by period. We focus on the case where the asset quality

is independent, identically distributed (i.i.d.) across periods in the main part of the paper, and provide

the persistent quality case as an extension. Further, borrowers are privately informed about the current

period quality; hence, the security market for the equity claim is subject to adverse selection. At the

end of each period, private information is revealed and the collateral asset is traded in an asset market.

Therefore, information friction exists exclusively in the security market in this economy. The extent of

the information friction in the equity market is related to the asset price level because the equity claim

is backed by both the dividend payoff and the asset price. When the asset price is high, the equity claim

becomes less informationally sensitive in the sense that the difference between the expected values of

low and high quality collateral decreases, and hence the adverse selection problem is milder. Conversely,

when the asset price is low, the adverse selection problem is more severe.

There are three possible equilibrium regions in this economy. There is a ‘separating’ region where

adverse selection is severe. In this region, the asset price is depressed. Only borrowers with low-quality

assets sell their asset-backed equity claims to obtain funding. Borrowers with high-quality assets choose

not to sell any since their equity claims would have been valued at a large discount relative to gains
2This restriction is a natural one since equity instruments are available to all economies including those without devel-

oped financial markets.
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from trade due to severe adverse selection. There is a ‘pooling’ region where adverse selection is low. In

this region, the asset price is booming. Both types raise funding by selling equity claims to acquire high

gain from trade and equity claims are priced at a high pooling level. There is also a ‘multiplicity’ region

where adverse selection is intermediate, and both separating and pooling equilibria coexist. That is, in

this region prices are self-fulfilling. The price feedback in the model is dynamic because if the equity

claim to the asset is traded in a pooling equilibrium in future periods, then the future collateral service

of the asset would be large which means that the asset price today would indeed be high. Conversely, if

the equity claim to the asset is traded in a separating equilibrium in future periods, then the collateral

service of the asset would be low which justifies a lower asset price today. This dynamic feedback loop

underlies self-fulfilling asset prices and multiple equilibria in the model.

Next, we introduce the security design. For expositional clarity we make the following modeling

choices: 1) in each period, the designer chooses a menu of securities backed by the collateral asset’s

current period dividend and its resale price to maximize ex ante surplus; 2) securities are traded in

dedicated over the counter markets that are informationally segmented; and 3) in each security market

investors engage in Bertrand competition. In this environment, we demonstrate that when security

design is optimally chosen every period, the dynamic price feedback eliminates the multiplicity and

restores the uniqueness in equilibrium.3 This finding highlights an additional benefit of security design

besides the well understood one in the literature – that is, in a static economy optimal security design

improves liquidity.4 Formally, we show that there is a unique equilibrium with security design where the

optimal design involves a short-term debt tranche that both borrower types sell in a pooling equilibrium,

and a residual equity tranche that only the low-type borrower sells in a separating equilibrium. The

unique security design equilibrium Pareto-dominates the separating equilibrium and corresponds to the

pooling equilibrium in the multiple equilibria region of the equity-only baseline case.

A key economic force in optimal security design is the dynamic feedback between the asset price and

the face value of the debt tranche. As the collateral price increases, the debt tranche becomes more

valuable and the designer can raise the face value of the debt further. Conversely, as the face value of

debt increases, borrowers raise more liquidity by selling debt and hence realizing larger gains from trade,
3The assumption that borrowers have the flexibility to adjust the security design at the beginning of each period is

important. In practice, security contract terms may not be updated frequently because of administrative costs or simply

inattention. Chiu et al. (2022) show that when contract terms are rigid in the sense that the face value may not be updated

each period, a run equilibrium through a dynamic price feedback might emerge, and the liquidity of the security market

may deteriorate.
4For example, Leland and Pyle (1977); Myers and Majluf (1984); Nachman and Noe (1994); DeMarzo and Duffie (1995);

Biais and Mariotti (2005) and many others reviewed later.
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which leads to higher collateral prices. With security design, agents intertemporally coordinate their

beliefs so that the debt tranche is always traded in a pooling equilibrium in each period, leading to a

higher price for the collateral asset. A higher asset price, in turn, justifies the debt tranche to be traded

in a pooling equilibrium. This dynamic feedback loop removes multiplicity.

In a static setting, it is known since the work of Akerlof (1970) that multiple equilibria may exist

in adverse selection models if buyers take prices as given. Wilson (1980) has shown that when buyers

are strategic and compete à la Bertrand, there is a unique equilibrium in the static adverse selection

environment. We use the equilibrium concept of Wilson (1980) to abstract from the well-known static

multiplicity issue and highlight a new dynamic mechanism for multiplicity: the expectation of low prices

in the future induces adverse selection in the present, leading to a self-fulfilling low-price equilibrium

that survives standard game-theoretic foundations. We further show that a new theoretical result, but

in a similar spirit, holds in dynamic settings. Expanding the set of available securities between buyers

and sellers eliminates the dynamic multiple equilibria and restores uniqueness.

Moreover, we demonstrate that these insights on price feedback and security design are robust to

alternative modeling choices on the markets for securities and the collateral asset. First, we show that

our main result carries over to the case of unsegmented security markets where there is information

leakage across securities markets. Second, we allow borrowers to issue long-term securities backed by

existing long-term securities and show that they can be replicated by the short-term securities (backed

by the current period dividend and the collateral asset’s resale price) that we study in the main model.

Intuitively, the equivalence between these two settings arises because the asset price captures all future

gains from trade and is akin to the value function in dynamic programming. Third, instead of Bertrand

competition among investors, we assume borrowers and investors interact through an intermediary that

maximizes total funding from each security. We show that our baseline multiplicity result holds under

this alternative microstructure. Fourth, we allow for noncompetitive pricing of the collateral asset where

buyers and sellers bargain over the price of the asset at the end of each period. We show that non-

competitive pricing is equivalent to our main model except that borrowers obtain lower gains from

trade.

We also extend the model to incorporate persistent private information. When private information

is persistent, the asset price is state dependent. Since the state is privately observed by borrowers,

persistence introduces an additional source of adverse selection. As a result, when private information

is long-lived, the debt tranche is smaller (i.e. there is less leverage) and supports less funding than when

private information is short-lived.
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In the last part of the paper, we focus on one implementation of the optimal security design: short-

term repo contracts. In the repo implementation, there is a representative borrower who values funding

liquidity more than the investors. The debt tranche in the optimal design has key characteristics of repo

and repo-like contracts: short-term, collateralized debt, typically backed by long-term collateral assets.5

Asset repurchase arises naturally since the borrower has incentive to purchase back the asset in every

period to use it as a collateral backing security issuance in the following period. We provide simple and

transparent comparative static results that link repo terms with the model primitives for both types of

information frictions, hence deriving new testable implications regarding properties of the repo markets.

For example, we find that the repo rate is decreasing and repo haircut is increasing in the degree of

adverse selection holding the expected value of the asset’s payoff constant.

2 Related Literature

In his seminal work on the lemons market, Akerlof (1970) studies the impact of adverse selection on

trade volume and efficiency. There is a long lineage of security design literature with asymmetric in-

formation and adverse selection, including Leland and Pyle (1977), Myers and Majluf (1984), Nachman

and Noe (1994), DeMarzo and Duffie (1995), DeMarzo and Duffie (1999), Biais and Mariotti (2005).6

We contribute to this literature by introducing dynamic feedback from asset prices to the security design

and illustrating that security design eliminates multiple equilibria.7

By studying optimal collateral-backed security design and funding liquidity, our paper is also related

to the literature on collateralized lending in monetary economics and macroeconomics starting with the

seminal work of Kiyotaki and Moore (1997). Recent studies on macroeconomic implications of financial

frictions include Gorton and Ordonez (2014), Kuong (2017), Parlatore (2019), and Miao and Wang

(2018). Kurlat (2013) and Bigio (2015) study financial frictions that arise endogenously from adverse

selection in a dynamic production economy. Our paper demonstrates that security design in a dynamic
5The residual equity tranche can be thought of as a derivative contract traded on the over-the-counter market.
6Additionally, Guerrieri, Shimer, and Wright (2010) and Chang (2018) study asset markets with asymmetric information

and show that, when buyers post a menu of contracts, screening through probabilistic trading (or market tightness) results

in a separating equilibrium.
7Our result that both borrower types issue debt that is traded in a pooling equilibrium is reminiscent of Gorton and

Pennacchi (1990) and Boot and Thakor (1993). Dang, Gorton, and Holmstrom (2013), Farhi and Tirole (2015) and Yang

(2020) incorporate endogenous asymmetric information. The fact that information friction affects the moneyness of an

asset has also been studied by Lester, Postlewaite, and Wright (2012) and Li, Rocheteau, and Weill (2012). Security design

with heterogenous information is studied in Ellis, Piccione, and Zhang (2017).
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adverse selection environment eliminates multiple equilibria, pointing to a potentially socially beneficial

role of financial intermediaries.

Our paper is aligned with macrofinance literature where multiple equilibria are dynamic in nature

(such as Plantin (2009), Moore (2010; 2013), Chiu and Koeppl (2016), Donaldson and Piacentino (2017),

Asriyan, Fuchs, and Green (2019), and Bajaj (2018)). Most closely related to our paper in this literature

are Moore (2010; 2013), Chiu and Koeppl (2016), and Asriyan, Fuchs, and Green (2019). They feature

dynamic price and liquidity feedback under adverse selection. However, the occurrence of multiple

equilibria in these papers crucially depends on the persistence of asset quality. In Asriyan, Fuchs, and

Green (2019), for example, the gains from trade are in the style of Duffie, Garleanu, and Pedersen (2007):

some agents receive a higher utility from the asset dividend, or produce more output using the asset as

input, but they have asymmetric information about the quality of the asset. This structure implies that

the severity of the adverse selection problem depends only on what creates gains from trade: dividend. If

the asset quality is i.i.d., adverse selection is short lived, future high- and low-quality assets look identical

and the future resale concern no longer affects today’s adverse selection. In our model, the entire cum-

dividend value of the asset creates gains from trade, which generates a new feedback. This insight into

dynamic multiplicity is unique and does not depend on persistent asset quality. Furthermore, existing

models study dynamic adverse selection in indivisible durable assets, whereas our setup admits divisible

financial assets (claims to a stream of future dividend payments), providing a natural setting to study

security design. The dynamic multiplicity result in our paper is also similar to the multiplicity result in

Bajaj (2018). However, Bajaj (2018) does not study security design, whereas our main theoretical result

on uniqueness and our application to repo are about security design.8

Finally, the repo implementation of our model is related to theoretical work on repo contracts. Among

those, Geanakoplos and Zame (2002), Geanakoplos (2003), Fostel and Geanakoplos (2012), and Simsek

(2013) model collateralized borrowing in the general equilibrium context. Gottardi, Maurin, and Monnet

(2017) model repo contracts and the repo chain using the competitive approach of Geanakoplos (1997)

with an added feature of the nonpecuniary penalty of default. Dang, Gorton, and Holmstrom (2011)

model the haircut as the outcome of repo chain, borrower’s quality, lender’s liquidity need, and collateral

value. Bigio and Shi (2020) study a two-period screening model with adverse selection. To attract the

high-quality borrowers, lenders offer a repurchase option, a lower rate but have to reduce loan amounts

so that default rate is not too high. Therefore, in their model, repos resolve adverse selection inducing
8There are also several modeling differences between the two papers. In Bajaj (2018) asset quality is persistent, and

the bilateral exchange is modeled as a signaling game.
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full participation but introduce cream skimming that can produce worse outcomes than asset sales when

adverse selection is mild. Typically in screening models such as Bigio and Shi (2020), the challenge

is nonexistence rather than multiple equilibria. We depart from the theoretical literature on repo by

modeling the joint determination of collateral asset prices and repo terms, highlighting the unique price

feedback mechanism and the role of repo in eliminating price multiplicity.

3 The Model Setup

The economy is set in discrete time and lasts indefinitely. There is a unit of a long-lived asset that pays

out a random perishable payoff in every period. There are many infinitely lived potential owners, with

deep pockets, identical preferences, and access to the same information, who can potentially own the

asset. We refer to a representative owner as agent O. There are also several potential investors who live

for a single period and are replaced every period. We refer to them as agent Is.

Gains from Trade. Agent O values inputs provided by the agent Is, which leads to gains from trade

in this economy. We denote the value per-unit of the input to agent O by z, and assume that it exceeds

the per-unit cost of providing the input by agent Is which is normalized to one.

In a frictionless economy, given that z > 1, gains from trade would be potentially unlimited. The key

friction that limits gains from trade in our economy is lack of commitment: agent O cannot promise to

pay back, and thus cannot borrow from investors unless a credible promise is made. The asset provides

a way for agent O to partially overcome the commitment friction because it can be used as collateral to

back up payment promises.

Asset Properties and Information Environment. The asset yields a random payoff at the end of

period t which we denote as st ∈ [s, s̄], where 0 ≤ s < s̄. The payoff state, st, captures both cash

payoff that the asset generates, such as dividend or interest rate payment, and other private benefits

that accrue from the asset to agent O, such as a convenience yield and rental income. We assume that

st is distributed according to probability distribution FQt
where Qt ∈ {L,H} denotes the quality of the

asset. Quality Qt is i.i.d. over time and Qt = L with probability λ ∈ (0, 1).9

We denote the density of FQ by fQ and its survival function, 1−FQ (s) , by F̃Q (s). We assume both

distributions have strictly positive density in their domain [s, s̄], and FH stochastically dominates FL

according to the likelihood ratio, i.e., fL (s) /fH (s) is decreasing in s ∈ [s, s̄].

We assume that the use of the collateral asset is, however, limited by an additional friction in the
9In Section 8, we study the persistent quality case.
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economy: asymmetric information. The quality of the collateral asset is privately observed by the agent

O at the beginning of each period, thus introducing an adverse selection problem. The assumption that

agent O is better informed of the collateral asset quality can be motivated or microfounded in various

ways. For example, borrowers hold collateral assets on their balance sheets which may give them an

informational advantage on the quality of these assets.10 We denote the end-of-period ex-payoff price of

the asset by ϕt.

Securities. Agent O raises inputs from investors through the sale of asset-backed securities, which are

payment promises. Formally, a security y : [s, s̄] → R+ is a payoff contingent payment contract. Security

payment is fulfilled at the end of a period when the state and the price become public information. We

assume that securities are monotone:

y (s) ≥ y (s′) if s ≥ s′ (1)

for all s, s′ ∈ [s, s̄].

A security design is a finite set of securities, J =
{
y1, · · · , yJ

}
, backed by the asset, that is,∑

yj∈J

yj(s) ≤ s+ ϕt. (2)

for all s ∈ [s, s̄].

Security Markets. The securities are sold in dedicated over-the-counter markets after agent O obtains

private information about the asset’s quality and before the quality becomes public information. In each

security market, several investors make bids à la Bertrand and the seller – the asset owner – decides how

much to sell at the highest bid.11 We denote the price of security j by qjt , and the quantity of security j

exchanged when the underlying asset quality is Q by ajt,Q.12 For expositional clarity, we further assume

that an investor has access only to one security market, so that trading information is segmented across

security markets.13

10Ownership of the asset often enables owners to observe the cashflows of the asset, or obtain other cashflow-related

information (e.g., on governance). One real-world example of this comes from mortgage loans, which are often used as

collaterals by loan originators who have better information on their quality. Another example is proprietary investment

portfolios of hedge funds that are offered as collateral to obtain financing and increase leverage. There are also historical

incidences where some borrowers, especially when hit by unobservable random negative shocks, debased collateral assets,

e.g., by reducing the metallic content of coins below their face value. Recently, collateral quality has been subject to

questioning because of the possibility that borrowers might pledge it multiple times.
11If several investors are tied for the highest bid, agent O equally splits the amount she would like to sell between them.
12The price of the security does not depend on the underlying asset quality because investors are not able to distinguish

between low and high quality when they make offers for the security, but the quantity exchanged depends on the quality

because the owner is privately informed.
13In section 7, we show that the segmentation assumption is not necessary for the main results in the paper.
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Determination of the Asset Price. Given security design Jt, the ex-ante surplus at time t in this

economy is given by:

Vt =λ

∫ s̄

s

∑
j∈Jt

ajt,L

(
zqjt − yjt (s)

)
+ (s+ ϕt)

 dFL(s)

 (3)

+ (1− λ)

∫ s̄

s

∑
j∈Jt

ajt,H

(
zqjt − yjt (s)

)
+ (s+ ϕt)

 dFH(s)

 .

The end-of-period t ex-dividend asset price, ϕt is equal to the discounted value of time t+ 1 surplus:

ϕt = βVt+1 (4)

where β is the discount factor, 0 < β < 1/z. The asset price can also be viewed as the continuation

value to the owner of retaining the asset at the end of period t. We assume that the asset price is set in

a frictionless competitive centralized market. In our economy, frictions exist exclusively in the securities

market so that we focus purely on the role of security design under dynamic adverse selection.14

Security Design Problem. We follow the literature on security design, and assume that the design

takes place at the beginning of each period before the arrival of any private information and is flexible

since the set of securities can be updated at the beginning of each period. The goal of security design is

to choose at the beginning of each period the set of securities that are available for trading in that period

to maximize ex-ante surplus Vt taking security prices, qjt , and quantities, ajt,Q, as given. We presume

an environment with several competing short-lived intermediaries who offer security design services to

borrowers. The intermediaries maximize the borrower surplus, which equals the overall surplus since

lenders compete Ã -la Bertrand and make zero profits.

Timing. In each period, the security design takes place first. Then, agent O receives private informa-

tion and trading in the security markets occurs. Once trading in the security markets is completed and

gains from trade are obtained, both Qt and st are revealed and asset price is determined. Finally, agent

O pays investors who hold the securities, and consumption takes place.15 Figure 1 graphs this timeline.

We now define the equilibrium concept in our economy.

Definition 1. An equilibrium with security design consists of the asset price ϕt, a security design

Jt =
{
y1t , · · · , yJt

}
, security prices qjt and quantities

{
ajt,L, a

j
t,H

}
for all securities such that:

14In section 7, we allow for a noncompetitive mechanism where the asset price is set via Nash bargaining.
15The dynamic framework is borrowed from Lagos and Wright (2005).
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Figure 1: Timeline

1. The price of security j, qjt , is determined through Bertrand competition in each security market,

and thus qjt is equal to the expected value of a unit of the security given ajt,Q:

qjt = λajt,LELy
j
t (s) + (1− λ) ajt,HEHyjt (s) . (5)

2. Quantities sold by each type must be optimal given the price, i.e., for each Q ∈ {L,H},

ajt,Q ∈ arg max
a∈[0,1]

a
(
zqjt − EQy

j
t (s)

)
. (6)

3. Asset price ϕt satisfies (4).

4. Security design Jt satisfies constraints (1) and (2) and maximizes (3) among all security designs

satisfying (1) and (2) where security prices and quantities are given by (5) and (6).

For the reminder of this paper, we study stationary equilibria and hence remove the time subscripts.

4 Equilibrium in Security Markets

The value of securities affects the optimal security design. We begin the analysis by describing the

equilibrium in the market for an arbitrary security y. We assume that the expected payoff of the security

when issued by the high type is weakly more than that issued by the low type, i.e., ELy(s) ≤ EHy(s).16

We define the degree of information insensitivity as the ratio of the expected value of the security under

the low versus the high distribution, i.e., ELy(s)/EHy(s). As this ratio increases, the expected values

of the security under the low versus high distribution become closer, and the adverse selection problem

becomes less severe.
16This assumption is automatically satisfied for monotone securities.
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Since our focus is not on multiple equilibria in the static setting, following Wilson (1980), we assume

that investors are strategic and compete à la Bertrand, ensuring that the equilibrium in each security

market is generically unique. That is, in the market for security y, investors simultaneously make

price offers taking into account which types of borrowers would sell the security at that price. Agent

O observes these offers, and decides how much of the security to allocate to each investor.17 Due to

Bertrand competition, investors make zero surplus in expectation, and the equilibrium price of the

security, q, is given by (5). The quantity sold by each type of agent O, aQ, is optimal for that type and

satisfies (6). The next proposition characterizes the equilibrium in the security market.

Proposition 1. If ELy(s)/EHy(s) > ζ ≡ 1 − (z − 1)/(λz), in the market for security y the price of

the security is q = λELy(s) + (1− λ)EHy(s) and aL = aH = 1. If ELy(s)/EHy(s) < ζ, the price of the

security is q = ELy(s) and aL = 1 and aH = 0.

Proposition 1 shows that when ELy(s)/EHy(s) is above the threshold ζ, the adverse selection problem

is not too severe, and both types sell the security. In this case, the security price is the pooling price

q = λELy(s) + (1 − λ)EHy(s). When ELy(s)/EHy(s) is below the threshold, the adverse selection

problem is severe, and only the low type sells the security. In this case, the security price is the

separating price q = ELy(s). A security traded in a pooling equilibrium commands a higher price and

generates more liquidity for the borrower than the one traded at a lower separating equilibrium price.

When ELy/EHy = ζ, both pooling and separating (and even semi-separating) equilibria are possible.

To simplify exposition in this knife edge case, we select the pooling equilibrium.

The above proposition also indicates that in addition to the parameters that characterize quality

heterogeneity, the gains from trade parameter, z, is also an important determinant of adverse selection:

a lower z leads to a higher ζ. Even if there is very little asymmetric information about the quality of

the security i.e., when ELy(s)/EHy(s) is slightly below 1, as z approaches 1 (so that ζ is close 1), the

security will be sold in a separating equilibrium. In other words, when gains from trade are low, even a

slight amount of asymmetric information results in adverse selection problem.
17In this formulation agent O has all the bargaining power, but this is not critical for any of our results. In section 7,

we allow for a noncompetitive mechanism where the asset price is set via Nash bargaining.
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5 The Baseline: Multiple Equilibria of the Dynamic Lemons

Market

In this section, we consider a baseline case where the borrower is restricted to issuing only the equity

claim, or a passthrough security, to the collateral asset in the security market. We demonstrate that this

economy is fragile and exhibits dynamic multiplicity in prices. Specifically, we show that there might

be multiple equilibria in the security market justified by different asset prices. The different asset prices

are themselves justified by the different equilibria in the security market.

For this baseline case, we use the notion of equilibrium in Definition 1 with the restriction that the

equity claim to the asset is the only available security. Security design becomes trivial since there is

only a single feasible security. By Proposition 1 the price of the equity claim to the asset in the security

market is given by qP = λELs+(1−λ)EHs+ϕ if (ELs+ϕ)/(EHs+ϕ) ≥ ζ and qS = ELs+ϕ otherwise.

Using (4), we obtain the price of the collateral asset in the asset market as:

ϕ =

βzqP , if ELs+ϕ
EHs+ϕ ≥ ζ,

β
[
zλqS + (1− λ) (EHs+ ϕ)

]
, if ELs+ϕ

EHs+ϕ < ζ.

(7)

Note that in a stationary equilibrium, the equity claim backed by the collateral asset is either always

traded in a pooling equilibrium, or always traded in a separating equilibrium.

5.1 Pooling Equilibrium

Plugging qP into (7) shows that a pooling equilibrium, in which both types of agent O sell the equity

claim in the security market, exists if and only if

ELs+ ϕP

EHs+ ϕP
≥ ζ, (8)

where the asset price in the pooling equilibrium is given by:

ϕP = βz
(
λELs+ (1− λ)EHs+ ϕP

)
.

Solving for the pooling price we obtain:

ϕP =
βz (λELs+ (1− λ)EHs)

1− βz
. (9)

Plugging (9) into (8) shows that a pooling equilibrium exists if and only if ELs/EHs ≥ κP , where

κP =
ζ − βz (1− (1− ζ)λ)

1− βz (1− (1− ζ)λ)
.
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5.2 Separating Equilibrium

A separating equilibrium, in which only the low type of agent O sells the equity claim in the security

market, exists if and only if:
ELs+ ϕS

EHs+ ϕS
< ζ, (10)

where the asset price in the separating equilibrium is given by:

ϕS = β
(
zλELs+ (1− λ)EHs+ (zλ+ (1− λ))ϕS

)
,

Solving for the separating price, we obtain:

ϕS = β
zλELs+ (1− λ)EHs

1− β − βλ (z − 1)
. (11)

Plugging (11) into (10) indicates that a separating equilibrium exists if and only if ELs/EHs < κS ,

where:

κS =
ζ − β (1− (1− ζz)λ)

1− β (1− (1− ζz)λ)
.

5.3 Properties of Equilibria and Multiplicity

The ratio ELs/EHs captures the degree of adverse selection in the equity market of the baseline case. As

this ratio increases, the expected payoff with respect to the two distributions becomes closer, and adverse

selection is ameliorated. It is easy to check that κP < κS . Hence, there is always an intermediate degree

of adverse selection where multiple equilibria exist. We present this result in the following proposition.

Proposition 2. (i) If ELs/EHs ≥ κS , then there is a unique equilibrium in which the equity claim of

collateral asset is sold in a pooling equilibrium in the security market, and the pooling price is given by

(9).

(ii) If κP > ELs/EHs, then there is a unique equilibrium in which the equity claim of the collateral

asset is sold in a separating equilibrium in the security market, and the separating price is given by (11).

(iii) If

κS >
ELs

EHs
≥ κP , (12)

then both the pooling equilibrium described in (i), and the separating equilibrium described in (ii) exist.

The intuition for the multiple equilibria result in this proposition is as follows. When the asset price is

high, the degree of information insensitivity of equity,
(
ELs+ ϕP

)
/
(
EHs+ ϕP

)
, is above the threshold

ζ. Hence, the adverse selection problem is mild, and the high-type agent O is willing to pool with the
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low type and issue equity in the security market. In turn, if agents anticipate the equity claims of the

asset to be traded in a pooling equilibrium in future periods, the liquidity service of the asset is large;

hence, the asset price today is high. Conversely, when the asset price is low, the degree of information

insensitivity of the equity,
(
ELs+ ϕS

)
/
(
EHs+ ϕS

)
, is below the threshold ζ. Therefore, the adverse

selection problem is severe and the high type agent O retains the asset and chooses not to issue equity

in the security market. In turn, if agents anticipate the equity claim of the asset traded in a separating

equilibrium in future periods, the liquidity service of the asset is limited; thus, the asset price today is

low. As a result, asset prices are self-fulfilling in this economy.

In the baseline case, multiple equilibria exist even though the asset quality is i.i.d. This fact indicates

that the sources of multiple equilibria in our setting are distinct from those in the existing literature. In

the static setting, multiple equilibria exist under perfect competition as in Akerlof (1970). If prices are

low, only the equity claims of the low-quality assets are sold, which justifies low prices; if prices are high,

the equity claims of the higher-quality assets are also sold, which in turn justifies higher prices. For some

parameter values both equilibria exist. Wilson (1980) has shown that when buyers are strategic and

compete à la Bertrand, there is a unique equilibrium in the static adverse selection environment. The

reason is that uninformed buyers do not take prices as given, they recognize the link between price and

quality, and only the highest zero-profit price survives as a Nash equilibrium. However, this logic does

not extend to dynamic settings. The expectation of low prices in the future could induce adverse selection

in the present thus lead to a self-fulfilling low-price equilibrium that survives standard game-theoretic

foundations.

In the next section, we show that increasing the flexibility of security design by removing the restric-

tion on the set of available securities, restores the unique equilibrium in the economy.

6 The Main Model: Optimal Security Design

In this section, we solve the equilibrium described in Definition 1 with security design, and show that

the equilibrium is unique. Hence, optimal security design eliminates multiple equilibria that arise when

agents are restricted to trading only the equity claim of the underlying asset.

6.1 Unique Equilibrium with Optimal Security Design

The next proposition characterizes the optimal security design, and shows that it involves at most two

securities: One security, yD(s), which is traded in a pooling equilibrium, is a debt contract; the other
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security, yE (s), which is traded in a separating equilibrium, is the residual equity tranche. That is, both

high and low quality borrowers sell one unit of the debt contract, only low quality borrowers sell one

unit of the equity contract and high quality borrowers retain the equity contract.

Proposition 3. The optimal security design consists of two security tranches. One tranche is a debt

contract given by:

yD(s) = min(s+ ϕ,D), (13)

for some D ∈ (s+ϕ, s̄+ϕ]. The residual tranche is an equity contract given by yE (s) = max (0, s+ ϕ−D) .

Moreover, the debt contract is traded in a unique pooling equilibrium, the equity contract is traded in a

unique separating equilibrium and, D is unique for a given ϕ.

The amount D is the face value of the debt contract, and it is pinned down by the high-quality asset

owner’s participation constraint. The face value of debt always exceeds s+ϕ, and incorporates the lower

bound of asset payoff (e.g., dividend or interest payment) and the asset price since this amount is free

from adverse selection.

Using Proposition 3 and letting d ≡ D−ϕ, we simplify the statement of equilibrium given in Definition

1. With this notation, we write the prices of the debt and equity tranches, qD and qE , as:

qD = λ

(
ϕ+ ELs−

∫ s̄

d

F̃L(s)ds

)
+ (1− λ)

(
ϕ+ EHs−

∫ s̄

d

F̃H(s)ds

)
, (14)

qE =

∫ s̄

d

F̃L(s)ds. (15)

Both types of borrowers sell the debt tranche, but only the low type sells the equity tranche. As a result,

the expected amount raised by selling the securities equals qD + λqE . From (4), the asset price can be

written as:

ϕ = β

[
zqD + zλqE + (1− λ)

(∫ s̄

d

F̃H(s)ds

)]
. (16)

Solving for equilibrium then comprises solving the designer’s optimization problem to find the optimal

threshold d ∈ (s, s̄] given the prices of debt and equity tranches qD and qE , and the asset price ϕ.

We state the main theorem of this paper as follows.

Theorem 1. There is a unique equilibrium with security design. If

ELs/EHs < κP , (17)
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then the debt threshold d ∈ (s, s̄) and the asset price ϕ are solutions to the participation constraint and

the Euler equation that are given by:

ϕ =
z

z − 1
λ

∫ d

s

[
F̃H(s)− F̃L(s)

]
ds−

∫ d

s

F̃H(s)ds− s, (18)

ϕ =
β

1− βz

{
z [λELs+ (1− λ)EHs]− (1− λ)(z − 1)

∫ s̄

d

F̃H(s)ds

}
. (19)

If ELs/EHs ≥ κP , then d = s̄ and ϕ = βz
1−βz [λELs+ (1− λ)EHs].

In the former case, the equilibrium with security design strictly Pareto dominates the (unique) sep-

arating equilibrium in the baseline case. In the latter case, security design uniquely selects the pooling

equilibrium. Thus, it strictly Pareto dominates the separating equilibrium in the baseline case when there

is one, and it replicates the pooling equilibrium otherwise.

The region given by (17) is the same region identified in Proposition 2 where a unique separating

equilibrium exists in the equity-only baseline case. Hence, security design improves liquidity when there

is a unique separating equilibrium in the equity-only baseline case.

We note that for the self-fulfilling multiple equilibria result in Proposition 2 and the uniqueness under

optimal security design result in Theorem 1 to hold, we only need the following two assumptions: lack

of commitment from borrowers and asymmetric information about the quality of the (only pledgeable)

collateral asset. We demonstrate later in this paper that the main results are robust to alternative

securities and asset market microstructures. The modeling choices we have made in the main model,

such as segmented securities markets, competitive asset markets, Bertrand competition in securities

markets, as well as maturity structures, are mainly for expositional clarity.

Figure 2 illustrates the feedback loop between the asset price, which depends on the future value of

the collateral, and the current face value of the debt contract, which is the underlying mechanism in

Theorem 1. As the face value of the debt tranche, D = ϕ+ d, increases, agent O obtains more liquidity,

and gains from trade increase because the marginal value of liquidity for agent O exceeds the marginal

cost of providing liquidity by the investors. The feedback loop involves intertemporal coordination since

the increase in gains from trade in future periods leads to an increase in ϕ. A higher asset price is

incorporated into the face value of debt, alleviating the adverse selection problem and pushing the face

value even higher.

Next, to provide intuition for the result in Theorem 1, we graphically construct the optimal security

design equilibrium. For any d, let ϕ (d) be the asset price in the asset market satisfying (19). Similarly,

for any ϕ, let d(ϕ) be the debt threshold satisfying 18. We graph the former with a solid line and the
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Figure 2: Asset Price ϕ and Debt Face Value ϕ+ d

latter with a dashed-dotted line in Figures 3 and 4. An intersection of these two lines is a solution to

(18) and (19) and constitutes an equilibrium.

The Euler equation (19) shows that if agents coordinate on a higher debt threshold tomorrow, the

asset price today will be higher, since ϕ is increasing in d.18 The function ϕ (d) has a few noteworthy

aspects. Let ϕ = ϕ (s) and ϕP = ϕ (s̄). From (11) we observe that ϕS is the asset price when only the

low type sells the asset and the high type retains both the resale price and the current period payoff.

In contrast, the asset price calculation in (19) takes into account that both types of borrowers sell the

debt claim backed by the future resale price as part of the collateral. As a result, ϕ > ϕS . On the other

hand, ϕ (s̄) is the same as the pooling price ϕP . To see this, we observe that the ϕP calculation takes

into account that both types use the resale price and the entire current period payoff of the asset as

collateral, which is equivalent to setting the face value of the debt contract to D = ϕP + s̄.

Next, we consider the designer’s choice of debt threshold, d(ϕ), which is depicted by the dashed-

dotted line in Figure 3 for the case where ELs/EHs < κP .19 The optimal security design chooses d

to be as large as possible making sure that the debt tranche is traded in a pooling equilibrium. We

discussed in the previous paragraph that as d increases, ϕ increases, which is depicted by the solid

line in Figure 3. This relaxes the high type’s participation constraint. However, as the debt tranche

incorporates more of the high payoff states, eventually the high type’s participation constraint begins

to tighten because, by the likelihood ratio dominance, the likelihood of the high payoff states according

to the high type relative to the low type keeps increasing, and the adverse selection problem worsens.

If d is too high, the high type, who values those states much more than the low type, might prefer to

retain the debt tranche rather than pool with the low type. The optimal security design pushes d to the
18Note that ϕ is strictly increasing for d ∈ [s, s̄), ∂ϕ/∂d is decreasing and is zero at d = s̄.
19This is the left boundary of the multiple equilibria region in 12. In this region, without security design, adverse

selection leads to a unique separating equilibrium.
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Figure 3: ϕ(d) and d(ϕ) when ELs/EHs < κP

unique point where the high type is indifferent between selling or retaining the debt. Crucially, optimal

security design solves the coordination problem that we observed in the baseline case where lenders face

strategic uncertainty about the high type’s participation in the security market. Optimal security design

eliminates this uncertainty by ensuring that both types participate in trading the debt tranche.

Figure 3 illustrates that regardless of how low the asset price is, as long as tranching is feasible,

optimal security design involves a debt tranche that incorporates some of the current period payoff.

That is, d
(
ϕ
)
> s. In the region depicted in Figure 3, adverse selection is severe, and even when the

asset price is as high as possible, the high type prefers to retain the equity tranche. That is, d
(
ϕP
)
< s̄.

Using these two curves, ϕ (d) and d (ϕ), we can find the equilibrium values (d∗, ϕ∗). The equilibrium

is where the two curves intersect, i.e., when ϕ∗ = ϕ (d∗) and d∗ = d (ϕ∗). As Figure 3 shows, when

ELs/EHs < κP , the unique equilibrium debt threshold is d∗ ∈ (s, s̄) . This explains the optimal security

design equilibrium and its difference relative to the baseline case in the first scenario.

We next consider the scenario when ELs/EHs > κP in Figure 4. In this case, adverse selection is less

severe and the d(ϕ) function is shifted to the right as the same asset price can sustain a higher face value

where the debt tranche is traded in a pooling equilibrium. When the asset price is above a threshold

denoted by ϕ̂, optimal security design incorporates all payoff states s̄ to the face value of debt, which is

captured by the vertical part of the d(ϕ) function. This vertical portion of (d(ϕ)) is a special feature of

debt contracts: the debt threshold cannot exceed the maximum payoff that the collateral asset can yield.

The two curves intersect only at the upper right corner,
(
s̄, ϕ
)
. As a result, there is a unique equilibrium

for the security design problem and it involves setting the debt threshold d∗ = s̄. That is, the optimal
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Figure 4: ϕ(d) and d(ϕ) when ELs/EHs > κP

security is a pass-through security, which means that the optimal security’s payoff is mapped one-to-one

from the asset’s cashflow at the realization date, equivalent to an equity contract.

The scenario depicted in Figure 4 may seem surprising since, as we illustrated in Section 5, without

the possibility of security design, there is a coordination problem leading to multiple equilibria in part

of this region. Security design solves this coordination problem, and we obtain a unique equilibrium in

which agent O sells the entire “pass-through” debt tranche in a pooling equilibrium. Intuitively, without

security design, the high type decides among only two options: whether to use the resale price and

the current period payoff of the asset as collateral versus retaining both parts. The outcome depends

on the asset price. In the good equilibrium ϕ = ϕP and the high type sells the asset. In the bad

equilibrium, ϕ = ϕS and the high type retains the asset. The bad equilibrium cannot survive with

security design because even if the asset price was ϕS , the optimal security design would be able to

improve this separating equilibrium by creating a debt tranche with face value ϕS , which in turn would

increase the asset price above ϕS . Both graphs in Figures 3 and 4 in fact show that the equilibrium

asset price in the optimal security design equilibrium is no less than ϕ = ϕ (s) > ϕS (since the face value

of the debt tranche is never below ϕ + s). Given the increase in the asset price to ϕ from ϕS , the high

type’s participation constraint is relaxed, which leads to the optimal security design to incorporate more

of the current period payoff into the debt tranche (that is, d > s). A higher d will increase the asset

price ϕ and so on, triggering the dynamic price feedback loop. This unravelling process is illustrated in

Figure 4 with the dashed arrows. As the graph in Figure 4 shows, when the asset price is ϕ, the face

value of the debt rises to ϕ + d
(
ϕ
)
. When the face value of the debt increases to ϕ + d

(
ϕ
)
, the asset
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price further increases. The process ends when the price rises to ϕP .

7 Robustness: Alternative Modeling Choices

We now demonstrate the robustness of our results derived from the main model by allowing for alternative

modeling choices. For expositional clarity, we only provide a summary and intuitions in this section.

The formal results are presented in the online Appendix B.

Unsegmented Security Markets. We first change the segmentation assumption on security markets

by assuming security markets are unsegmented, that is, we allow lenders to make inferences about the

type of the borrower from their trades across markets. We show in Appendix B.1. that our main result

– there is a unique equilibrium with security design – is robust to this modification.

With unsegmented markets, the security designer chooses at most two securities. When high and

low–type borrowers trade different securities, the design is separating. When both types trade the same

security, the design is pooling. In the separating case, the designer chooses a debt tranche and pass-

through equity. The high type trades only the debt tranche (and retains the residual equity) and the

low type trades the pass-through equity. Because security markets are unsegmented, in the separating

case, lenders learn the borrower’s type. We show that in this case, the only constraint that binds is

the low type’s incentive compatibility (IC) constraint which ensures that the low type does not mimic

the high type by selling debt instead of pass-through equity. In the separating case, this constraint pins

down the debt threshold. In the pooling case, the designer chooses a single debt tranche. Both types

trade the debt and retain the residual equity. We show that in this case, the only constraint that binds

is the high type borrower’s participation constraint which ensures that the high type has the incentive

to sell debt instead of retain it.20 In the pooling case, this constraint pins down the debt threshold. We

show that overall, there is still a unique equilibrium in which either the design is separating and the

equilibrium asset price is low, or the design is pooling and the asset price is high. An immediate corollary

of the analysis is that the designer obtains a higher payoff with segmented compared with unsegmented

markets since the low type’s IC constraint is not needed in the former case.

Long-term Securities. In our main model, the borrower sells a short-term security backed by the

current period dividend and the resale price of the long-lived asset. We demonstrate that the restriction

of security design to short-term securities is not as restrictive as it might seem. To do so, we introduce

long-term securities that specify payments from the borrower to investors in every period and state.
20This constraint is the same as the high type’s participation constraint in our main model.
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We drop the assumption that investors are short-lived. Instead, we assume that an investor who buys

a long-term security becomes a borrower in the next period and raises inputs by designing and selling

another long-term security backed by the existing long-term security that she owns.

We compare the setting with long-term securities with the one we consider in our main model. In

Appendix B.2, we first show that these two environments are equivalent – in the sense that the amount of

inputs raised in the securities market and borrower’s continuation value are the same – under symmetric

information. This result is intuitively similar to the principle of optimality in dynamic programming: the

asset price captures all future gains from trade and is akin to the value function which captures the value

of the dynamic program under future optimal behavior. We then illustrate how the equivalence result

also extends to the asymmetric information where quality is i.i.d. when the borrower issues securities

that are long-term debt-like and the residual equity tranche.

Securities Market Microstructure. In the main model, we stay close to the standard lemons market

Ã la Akerlof which is the simplest model of a lemons market and provide closed-form solutions. To

show that our results are robust to a different security market microstructure, we solve a model where

the borrower and investors trade securities through an intermediary in Appendix B.3. We assume that

the intermediary’s goal is to maximize the expected amount of inputs raised in the security market

while making sure that lenders break even. An alternative interpretation of this setting is that the

borrower signal her type through the quantity that she trades (or equivalently probability of trade) and

we select the most efficient equilibrium. The latter interpretation is closely related to the undefeated

equilibrium concept of Mailath, Okuno-Fujiwara, and Postlewaite (1993) invoked in Bajaj (2018). We

show that securities are still traded either in a pooling or a separating equilibrium. However, unlike in

the main model, the high type is able to sell a fraction of the security in the separating case. Despite

this difference, there is still a discontinuous drop in the amount of inputs the borrower can raise when

equilibrium switches from pooling to separating. We show that, as in our main model, when the borrower

is restricted to issuing only the equity claim to the collateral asset, the economy exhibits dynamic

multiplicity.

Nash Bargaining for Asset Resale Price. In the main model, we assume that at the end of each period,

there is a competitive market where the borrower buys back the asset from the investor. Suppose instead,

the two parties bargain over the resale price of the asset via Nash bargaining where θ ∈ (0, 1] is the

bargaining power of the borrower. We show in Appendix B.4 that this alternative model is equivalent to

the main model where the gains from trade parameter z in the asset price is replaced with ẑ = 1−θ+θz.

This result is intuitive since only proportion θ of the gains from trade is captured by the borrower and

22



hence, reflected in the asset price.

8 Persistent Asset Quality

In this section, we discuss how introducing persistence in asset quality affects the feedback loop and

adverse selection problem in our model. To capture persistence, we assume that asset quality Qt ∈

{L,H} follows a Markov process where Qt = L with probability λQt−1 ∈ (0, 1), where λL ≥ λH . The

unconditional probability of Qt = L in the steady state is denoted by λ, where λ ≡ λH/ (1− λL + λH).

Persistence in quality increases when λL − λH increases holding λ∈ (0, 1) constant. We assume that

financial markets are segmented across time so that when the period is over, agents in the following

period cannot access the past trading or payoff information (including the security designer). When

quality is i.i.d., i.e., λL = λH , this assumption is innocuous because past quality does not provide any

information about the future. It allows us to abstract away from the issue of signaling and reputation

and focus instead on the dynamic coordination role of security design.21

In the persistent quality setup, since Q is observed at the end of the period, the ex-dividend asset

price depends on the quality realization. Hence, we need to change a few notations accordingly in the

security design problem of the i.i.d case. First, we denote the asset price by ϕQ : {L,H} → R. Note

that, in addition to the current period payoff, now lenders and borrowers are asymmetrically informed

about the future asset price. As we show below, this additional source of information asymmetry makes

the adverse selection problem more severe in the persistent case.

Second, the feasible securities are now assumed monotone in the total payoff. That is,

y (s, ϕ) ≥ y (s′, ϕ′) if s+ ϕ ≥ s′ + ϕ′. (20)

Intuitively, since security payments are fulfilled at the end of a period when the state and the price

become public information, securities now depend explicitly on the end-of-period price, which depends

on the quality realization.

Therefore, in this setting, the asset price at the end of period t, ϕt,Q for Q ∈ {L,H}, is expressed as

its discounted value given time t quality and time t+ 1 security design Jt+1:
21See Chari, Shourideh, and Zetlin-Jones (2014) on the reputation effect under adverse selection.

23



ϕt,Q = β

λQ

∫ s̄

s

 ∑
j∈Jt+1

ajt+1,L

(
zqjt+1 − yjt+1(s, ϕt+1,L)

)
+ (s+ ϕt+1,L)

 dFL(s)

 (21)

+(1− λQ)

∫ s̄

s

 ∑
j∈Jt+1

ajt+1,H

(
zqjt+1 − yjt+1(s, ϕt+1,H)

)
+ (s+ ϕt+1,H)

 dFH(s)

 ,

Finally, in the beginning of each period t, the security design Jt takes the prices, qjt , and quantities,

ajt,Q, as given to maximize:

Vt =λ

∫ s̄

s

∑
j∈Jt

ajt,L

(
zqjt − yjt (s, ϕt,L)

)
+ (s+ ϕt,L)

 dFL(s)

 (22)

+ (1− λ)

∫ s̄

s

∑
j∈Jt

ajt,H

(
zqjt − yjt (s, ϕt,H)

)
+ (s+ ϕt,H)

 dFH(s)

 .

In the Online Appendix, we show that the baseline multiplicity result when the borrower is only

allowed to issue equity extends to the case of persistent quality, and the multiplicity region expands

when persistence in asset quality increases. The next proposition extends Proposition 3 to the persistent

quality case.

Proposition 4. Suppose that either fL or fH is log-concave. The optimal security design consists of

two security tranches. The tranche traded in a pooling equilibrium is a debt contract given by:

yD(s, ϕQ) = min(s+ ϕQ, D), (23)

for some D ∈ (s+ϕL, s̄+ϕH ]. The residual tranche is an equity contract traded in a separating equilibrium

and is given by yE (s, ϕQ) = max (0, s+ ϕQ −D) . Moreover, D is unique for given ϕL and ϕH .

We present the proofs of all the results in this section in the Online Appendix.

With persistence, the face value of debt always incorporates exceeds s + ϕL since this amount is

free from adverse selection but may be less than s+ ϕH because the asset price itself is now subject to

adverse selection. As the persistence in asset quality vanishes and λL and λH get closer, and the resale

prices ϕL and ϕH approach each other. In the limit we obtain the i.i.d. case where ϕL = ϕH = ϕ, and

the face value of debt always exceeds s+ ϕ, incorporating all of the resale price.

Let d ≡ D−ϕL and ∆ϕ ≡ ϕH −ϕL.22 With this notation, we write the prices of the debt and equity
22When the asset quality is low, d is the threshold up to which the current period’s payoff is incorporated into the

debt tranche. When the asset quality is high and d−∆ϕ < 0, the debt tranche incorporates a fraction of the asset price

ϕH , namely D < ϕH , and none of the current payoff. When the asset quality is high and d − ∆ϕ > 0, the debt tranche

incorporates the asset price ϕH and the current payoff up to the threshold d−∆ϕ.
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tranches, qD and qE , as:

qD = λ

(
ϕL + ELs−

∫ s̄

d

F̃L(s)ds

)
+ (1− λ)

(
ϕH + EHs−

∫ s̄

d−∆ϕ

F̃H(s)ds

)
, (24)

qE =

∫ s̄

d

F̃L(s)ds. (25)

With persistence, the expected amount of inputs raised by selling the securities depends on the state Q

and equals qD + λQqE . From (4), we write the asset prices as:

ϕQ = β

[
zqD + zλQqE + (1− λQ)

(∫ s̄

d−∆ϕ

F̃H(s)ds

)]
, Q ∈ {L,H} . (26)

Solving for equilibrium then comprises solving the designer’s optimization problem to find the optimal

threshold d ∈ [s, s̄+∆ϕ] given the prices of debt and equity tranches qD and qE , and asset prices ϕL

and ϕH .

For the next theorem, we strengthen the standard hazard rate dominance condition, and assume that

FH and FL satisfy: (
fH (s) /F̃H(s)

)
/
(
fL (s) /F̃L(s)

)
≤ [1− β(λL − λH)]

2
. (27)

In the i.i.d. case, where λL = λH , (27) is the standard hazard rate dominance condition, which auto-

matically follows from the likelihood ratio dominance assumption.23

The generalization of Theorem 1 to the case of persistent quality is as follows.

Theorem 2. Suppose that either fL or fH is log-concave, and (27) holds, then there is a unique equi-

librium with security design. If

ELs/EHs < κP , (28)

then d ∈ (s, s̄ + ∆ϕ), otherwise, that is, if ELs/EHs ≥ κP , then d = s̄ + ∆ϕ. In the former case,

the equilibrium with security design strictly Pareto dominates the (unique) separating equilibrium in the

baseline case. In the latter case, security design uniquely selects the pooling equilibrium. It thus strictly

Pareto dominates the separating equilibrium in the baseline case when there is one and it replicates the

pooling equilibrium otherwise.

The next proposition shows that an increasing persistence in asset quality leads to a lower debt

threshold.
23This is because when FH stochastically dominates FL according to the likelihood ratio, i.e., fL (s) /fH (s) is decreasing

in s, then FH stochastically dominates FL according to hazard rate, that is,(
fH (s) /F̃H(s)

)
/
(
fL (s) /F̃L(s)

)
≤ 1.

More generally, (27) is stronger than the hazard rate dominance condition and is not implied by likelihood dominance.
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Proposition 5. Fix λ > 0. When asset quality becomes more persistent, i.e., as λL − λH increases,

debt threshold d decreases.24

The gap between high- and low-quality asset prices, ∆ϕ, creates an additional source of adverse

selection. Since prices are forward looking, this second source of adverse selection is dynamic. Recall

that in the i.i.d. case, increasing the debt threshold, tightens the high type’s participation constraint.

This new dynamic effect may create an opposing force and relax the high type’s participation constraint.

To see why this may happen, suppose high- and low-quality assets sell at different prices, i.e., ∆ϕ =

ϕH − ϕL > 0, and the designer initially sets the debt face value at D = s+ ϕL, which is completely safe

regardless of asset quality. At D = s + ϕL, the high type strictly prefers to sell the debt tranche and

the participation constraint does not bind. Increasing the debt threshold initially increases both ϕL

and ϕH , and the low-quality asset price ϕL may increase faster than the high-quality asset price ϕH . As

a result, the price gap ∆ϕ may go down which lowers the adverse selection in asset prices and relaxes

the high type’s participation constraint. Despite this potentially countervailing force, Theorem 2 shows

that condition (27) guarantees a unique security design equilibrium.

The following proposition shows that as persistence increases, the price difference ∆ϕ - a proxy for

price volatility in our model - increases and the dynamic effect becomes stronger.

Proposition 6. Fix λ > 0. When asset quality becomes more persistent, i.e., as λL−λH increases, ∆ϕ

increases.

We observe that when persistence increases, consistent with the above proposition, condition (27)

becomes more stringent.25

9 Implementation as a Repo Contract

Optimal securities derived in this paper describe contract terms on cashflows between borrowers and

lenders upon realization of the state. In practice, the optimal security can be implemented in several

ways. In this section, we demonstrate one prominent implementation that is a one-period repo contract

traded in a pooling equilibrium, and a residual equity-like contract traded in a separating equilibrium.

Furthermore, asymmetric information is an important friction for the bilateral repo market, especially

in Europe. For example, Julliard et al. (2022) have shown that only 60% of bilateral repo contracts in
24If d ∈ (s, s̄) then as λL − λH increases, d decreases strictly.
25Similarly, when agents become more patient, i.e., as β increases, price gap increases and condition (27) becomes more

stringent as well.
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the UK are backed by high quality collaterals. In this implementation, there is a representative borrower

who values investors’ inputs (at z > 1) more than investors, and hence has an incentive to purchase back

the asset in every period to be able to use it to back securities in the next period. In this section, we first

map the terms of repo contracts in the context of our model. These contract terms are endogenously

determined given the underlying information and preference parameters. Next, we provide analytical

solutions using a two-point distribution to link the primitives of the model to the repo contract terms.

9.1 Terms of the Repo Contract

When two parties enter a repo contract, one party sells an asset to another party at one price (which in

our model corresponds to the loan value or the price of the debt tranche qD) and commits to repurchase

the same or another part of the same asset from the second party at a different price at a future date

(which in our model corresponds to the face value of the debt tranche D). If the seller defaults during

the life of the repo, the buyer (as the new owner) can sell the asset to a third party to offset the loss.26

The most straightforward mapping of the optimal contract in the model to reality is as follows. During

the term of the repo the lender receives s, which is the cash flow or the convenience yield/service flow

from the asset (in this sense, lender is the legal owner) in an escrow account.27 When the repo term is

finished, there are two possibilities: (i) if the face value D is more than s+ ϕ, the borrower obtains the

asset back from escrow by paying its price ϕ; (ii) if the face value D is less than s+ϕ, then the borrower

pays the lender remaining D− s, so that the lender obtains the promised face value D and the borrower

takes the asset back from escrow.28

Our model complements the existing repo literature by offering an alternative explanation for why

in a repo contract, an asset is sold and agreed to be repurchased.29 This feature naturally arises in our
26We take the definition of a fixed term repo contract from the International Capital Market Association (ICMA).
27Escrow guarantees that the lender returns the asset. This is consistent with our model which focuses on limited

commitment on the borrower side.
28According to this implementation, the pass through security follows the most common form of repo: the borrower sells

the security to obtain inputs, the lender owns it via a custodian and consumes the benefit of being an owner which is s,

the cash flow/service flow of the asset, and the borrower repurchases the security back at the end of the repo term (at

price ϕ).
29The feature of asset repurchase is modeled differently in the repo literature. In Gottardi, Maurin, and Monnet (2017),

asset repurchase arises from the need of lender and borrower to share risk since the collateral asset price is volatile. In

Duffie (1996) and Parlatore (2019), the reason for asset repurchases comes from the illiquidity in the secondary market –

if the secondary market is illiquid, it will be difficult for the borrowers to find the collateral asset to buy and hence they

would like to repurchase the collateral asset back directly from the lender. In Bigio and Shi (2020), the asset repurchase

option is introduced to meet the high-quality borrowers’ incentive compatibility constraint.
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model since borrowers always buy the collateral back at the end of borrowing -- hence, the repurchase

leg endogenously arises in equilibrium.

We now describe the two terms of the repo contract: repo rate, r, and haircut, h. The definition of

repo rate is straightforward:

r ≡ face value
loan value

− 1 =
D − qD

qD
. (29)

From the definition of repo rate r, we observe that the relationship between asset quality and interest

rate is not straightforward because asset quality has two opposing effects on the repo rate. When asset

quality worsens (improves), loan value is lower (higher), leading to a high (low) repo rate. In addition,

the face value of the debt might be adjusted down (up), resulting in a lower (higher) repo rate.

To define the haircut, we first need to define the collateral value from the lender’s perspective. In

the context of our model, the lender expects to generate on average Eϕ/β from the sale of the collateral

in the case of default, where Eϕ ≡ λϕL + (1− λ)ϕH . We refer to this amount as the collateral value.30

The definition of repo haircut in our model is

h ≡ 1− loan value
collateral value

= 1− qD
Eϕ/β

. (30)

From (16) we write the collateral value as:

Eϕ/β = zqD + λzqE + (1− λ)eH , (31)

where eH =
∫ s̄

d−∆ϕ
F̃H(s)ds is agent O’s expected value of a high-quality equity tranche. Substituting

(31) into (30), we obtain the following expression for haircut:

h = (z − 1)
qD + λqE
Eϕ/β︸ ︷︷ ︸

gain from trade/collateral value

+
λqE + (1− λ)eH

Eϕ/β︸ ︷︷ ︸
equity/collateral value

. (32)

The result from (32) shows that the repo haircut has two components. The first component arises

because borrowers, who price the collateral asset, value the liquidity service of the asset to realize gains

from trade, while lenders, who price the loan, do not value it. The term z − 1 is the net marginal

value of the liquidity service; it reflects heterogenous valuation over the collateral asset between lenders

and borrowers in our model.31 The second component is the value of the equity tranche relative to the

collateral value and arises mechanically because the equity tranche is excluded from the repo debt.
30Eϕ is the end-of-period expected value of the collateral asset. Because the repo contract is an intra-period short-term

contract, the collateral value in the definition of haircut refers to the beginning-of-period value, which equals Eϕ/β.
31In the case of debt tranche as a passthrough security, the equity tranche disappears, and the haircut is (z−1)/z, solely

driven by the marginal value of liquidity service.
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9.2 Repo Contract with a Two-point Distribution

In this section, we illustrate the properties of the optimal repo contract in closed form when quality

follows a two-point payoff distribution. We first consider the i.i.d. case and return briefly to the

persistent case at the end of the section. The purpose of this exercise is to provide simpler expressions

for the haircut and the repo rate with respect to the primitives of the model. Using these expressions

we are able to find clean comparative statics of repo contract terms that generate empirically testable

hypothesis, especially in the i.i.d. case which captures the characteristics of the vast treasury repo

market in the US.

Suppose that the high (low) quality asset pays one unit of payoff with probability πH (πL) and pays

zero otherwise where 0 ≤ πL < πH ≤ 1 and λ = λL = λH . The debt contract takes a simple form.

Regardless of the realization of the payoff, it pays the resale price ϕ. In addition, it pays d units if the

current payoff is one.32

Let the expected value of the payoff (based on public information) be given by Es ≡ (1−λ)πH+λπL.

Expressions for repo rate and haircut given in (29) and (32) become much simpler. The repo rate is:

r =
1− Es

ν
, (33)

and haircut is

h = 1− β

1− Es
ν

, (34)

where ν ≡ λ(πH − πL)/ (z − 1) captures the degree of adverse selection. Severity of adverse selection

increases in the probability that the asset is low quality (λ) and the difference in the probability of

obtaining a positive payoff under high versus low quality (πH − πL) and decreases in gains from trade

(z−1). We observe from equation (34) that haircut is increasing in adverse selection ν holding Es fixed,

and the sensitivity of haircut to adverse selection is increasing in β. The latter observation is another

manifestation of the dynamic feedback between collateral price and contract terms: when agents become

more forward looking, the role of resale price in backing the loan becomes more important. Hence,

higher adverse selection lowers price and leads to a higher haircut. Comparative statics on haircut with
32The expressions for the terms of this repo contract are as follows:

d = D − ϕ =

β
1−βz

[zλπL + (1− λ)πH ]

z
z−1

λ (πH − πL)− 1−β[1+λ(z−1)]
1−βz

πH

< 1,

ϕ =
β

1− βz
[zλπL + (1− λ)πH + (1− λ)(z − 1)πHd] .
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respect to information friction that ignores the dynamic feedback and take resale price as exogenously

given would then be inaccurate. The following proposition follows immediately from (33) and (34) and

describes the comparative statics of repo rate and haircut and.

Proposition 7. Both the repo rate and the haircut are decreasing in the expected value of the payoff

based on public information, Es, holding ν fixed. The repo rate is decreasing and the repo haircut is

increasing in the degree of adverse selection, ν, holding Es fixed.

This proposition maps out how the degree of adverse selection and the expected value of the payoff,

which are functions of the primitives of the model, affect repo rate and haircut. The only part of

Proposition 7 that may seem counterintuitive is the statement that repo rate is decreasing in adverse

selection. In fact, this result is in the same spirit as the standard result in credit rationing models

(Stiglitz and Weiss (1981)). When adverse selection increases, haircut goes up, which means that the

face value of repo loan is lower, making the repo loan safer and leading to a lower repo rate.

The results in this proposition indicate that the impact of adverse selection on repo terms is intricate.

When testing how adverse selection affects repo rates and haircuts, empiricists need to control for changes

in the expected value of the asset’s payoff. The degree of adverse selection and the expected value of the

payoff can be inferred from secondary information (such as prices, dividends, credit ratings, convenience

yields, etc.). With these implementable metrics, the simple analytical solution provides new testable

implications for cross-sectional repo contracts.

In segments of the repo market that use low-quality collaterals, private information advantage can

be long-lived. Motivated by this observation, we next demonstrate the effect of persistent private in-

formation for the two-point distribution case. The main message is that higher persistence in private

information leads to higher price volatility, lower collateral values and funding raised, larger haircuts

and repo rates. To allow for persistence, we let λL > λH where ∆λ = λL −λH . To simplify the analysis

and obtain closed-form solutions for the repo terms, we further assume that πH = 1 and πL = 0, i.e.,

the high quality asset always pays one unit of payoff, and the low-quality asset always pays zero. The

following proposition describes the comparative statics for outcomes of economic interest as persistence

in quality ∆λ increases holding the steady state quality distribution λ constant.

Proposition 8. Keeping λ constant, as ∆λ increases (i) the debt threshold, d decreases; (ii) price

volatility, ∆ϕ , increases; (iii) collateral value Eϕ decreases; (iv) loan value, qD, decreases; (v) haircut,

h, increases; (vi) repo rate, r, increases.

We present the proof of Proposition 8 in the Online Appendix.
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10 Conclusion

Our paper studies optimal security design in a dynamic lemons market. We demonstrate that one im-

plementation of our optimal security design involves short-term collateralized debt. Because optimal

security design helps coordinate investors’ intertemporal decisions, the dynamic lemons market under

optimal security design is robust to multiple equilibria induced by intertemporal miscoordination. We

also explore the economic implications of an implementation of optimal security, short-term repos, and

derive dynamic equilibrium properties of repo rates and haircuts. Our setup can be applied to any

collateralized borrowing where the collaterals are traded in the capital market.33 The underlying eco-

nomic mechanism of our theory is the price liquidity feedback effect derived from the fact that collateral

assets can be resold and resale prices can back security payments. Optimal security design eliminates

multiplicity, generates greater amounts of liquidity, and restores the economy to a unique Pareto-optimal

equilibrium.

According to the current understanding, the shadow banking system of overnight repurchase agree-

ments, asset-backed securities, broker-dealers, and investments contributed to the Great Depression and

the runs on the shadow banking system were classic bank runs à la Diamond and Dybvig (1983). How-

ever, this popular explanation ignores the fact that most securitized products and short-term funding

instruments of these shadow banks are backed by the resale prices of the assets on their balance sheet

(in addition to dividend/interest payments). Our model implies that in a dynamic economy, when fi-

nancial intermediaries can flexibly tranche their assets, self-fulfilling price dynamics can be removed and

the amount of funding liquidity as well as the real output in the economy will be greatly improved.

Securitization in fact eliminates multiple equilibria and excessive volatility in asset prices and liquidity.

Nevertheless, our theory identifies a new source of financial fragility that potentially emerges via the

price-liquidity feedback. The expectation of low asset prices in the future could induce adverse selection

in the present thus lead to a self-fulfilling low asset price equilibrium. Moreover, we find in a repo imple-

mentation of our model, that more persistence in private information results in more adverse selection,

volatile asset prices, a lower amount of repo debt financing, exacerbating the credit crunch. We conclude,

therefore, by pointing out that as the current global financial system moves from bank-based toward
33It has been observed that more firms raise funding and manage their working capital directly from investors by issuing

securities backed by marketable collateral assets on their balance sheets, sidestepping banks or other traditional financial

intermediaries. For instance, Apple Inc. reported $5.2 billion of repo borrowing in its 2020 10-K filing to support its

working capital need during the COVID-19 pandemic. An implication of this practice is that firms now have incentives to

acquire marketable assets (such as high-grade sovereign and corporate bonds) to access funding liquidity directly.
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market-governed, understanding the dynamic feedback mechanism between asset prices and funding liq-

uidity identified in this paper is critical. The price feedback mechanism in the market-based financial

system may generate more funding and promote greater economic growth, but at the same time it is

possible to ignite destabilizing self-fulfilling crises. Economic policy-makers and financial regulators need

to closely monitor this new source of financial instability.

11 Data Availability Statement

There are no new data associated with this article. No new data were generated or analysed in support

of this research.
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A Appendix

A.1 Proof of Proposition 1

Let q ≡ λELy + (1− λ)EHy. Note that zq − EHy ⪌ 0 iff ELy/EHy ⪌ ζ.

Consider the case ELy/EHy > ζ. Suppose that the equilibrium price q is strictly less than q. In this

case an investor can deviate and bid q−ϵ where ϵ > 0. For ϵ small enough, z (q − ϵ)−EHy > 0. Hence at

this price both types sell the security and the deviation generates strictly positive surplus. This means

that the equilibrium price must be at least q. At price q or above both types sell the security, hence the

only price that is consistent with zero profit condition is q = q.

Now consider the case ELy/EHy < ζ. In this case high type will sell the security only if q is

sufficiently larger than q. However, at prices above q, investors make negative profit. Hence equilibrium

price must be below q. If q is below (ELy) /z then neither type sells the security. In this case, one of

the investors can deviate and bid ELy − ϵ where ϵ > 0. For ϵ small enough, z (ELy − ϵ) − ELy > 0 so

the low type sells the security and the deviating agent makes strictly positive surplus. If q is at least

(ELy) /z but less than ELy then the low type sells the security to the investors who bid that price. In

this case, one of the investors who bids ELy or less can deviate and bid slightly above q. This agent then

buys the security alone and increases her surplus. At prices greater than equal to ELy (and below q),
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the low type alone sells the security. Hence the only price that is consistent with zero profit condition is

q = ELy.

A.2 Proof of Proposition 3

We first present a lemma that simplifies the analysis.

Lemma 1. If two securities, y and y′, are both traded in a pooling (separating) equilibrium, then y+ y′

is also traded in a pooling (separating) equilibrium. Moreover, if a feasible security design contains y and

y′, replacing the two securities by y+ y′ is also a feasible security design and the value of the designer’s

objective remains the same in these two cases. Hence, w.l.o.g. we can restrict attention to security

designs that contain at most two securities, one traded in a pooling equilibrium and the other traded in

a separating equilibrium.

Proof. If two securities, y and y′, are both traded in a pooling equilibrium, ELy ≥ ζEHy and ELy
′ ≥

ζEHy′. Then combining these two securities results in a security traded in a pooling equilibrium.

Similarly, combining two securities traded in a separating equilibrium results in a security traded in a

separating equilibrium. To see the second statement in the lemma, first note that replacing the two

securities with their combination is clearly feasible. In addition, when y, y′ and y + y′ all trade in a

pooling (separating) equilibrium, q′′, the price of y + y′, is the sum of q and q′, the prices of y and y′.

Now consider the pooling case. Ignoring the irrelevant terms, agent O’s payoff when the two securities

are separate is:

λ

∫
{a [zq − y(s)] + a [zq′ − y′(s)]} dFL(s) + (1− λ)

∫
{a [zq − y(s)] + a [zq′ − y′(s)]} dFH(s)

and when they are combined is:

λ

∫
{a [zq′′ − (y(s) + y′ (s))]} dFL(s) + (1− λ)

∫
{a [zq′′ − (y(s) + y′ (s))]} dFH(s).

Since q′′ = q + q′, when the securities are combined agent O’s payoff is unchanged.

Next consider the separating case. Once again ignoring the irrelevant terms, agent O’s payoff when

the two securities are separate is:

λ

∫
{a [zq − y(s)] + a [zq′ − y′(s)]} dFL(s) + (1− λ)

∫
{ay(s) + ay′(s)} dFH(s)

and when they are combined is:

λ

∫
{a [zq′′ − (y(s) + y′ (s))]} dFL(s) + (1− λ)

∫
{a (y(s) + y′ (s))} dFH(s).

Once again, when the securities are combined agent O’s payoff is unchanged.
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Using Lemma 1 we restate the optimal security design problem as choosing the pooling tranche of

the asset, yD(s), to maximize the value of a high-quality debt tranche:

EHyD(s) (A.1)

subject to

s+ ϕ− yD(s) ≥ 0,∀s ∈ [s, s̄], (A.2)

ELyD(s)− ζEHyD(s) ≥ 0, (A.3)

and

yD (s) ≥ yD (s′) if s ≥ s′,∀s ∈ [s, s̄]. (A.4)

We obtain the objective function by plugging the security prices and the quantities given in Proposition

1 into the designer’s objective. The first constraint above is the simplified feasibility constraint (2) and

requires yD (s) to be backed by the underlying asset. The second is the requirement in Proposition 1

that the security is sold in a pooling equilibrium. The third constraint restates (1) that requires the

pooling security to be monotone.3435

Observe that any right-continuous monotone security y(s) taking values in [s+ ϕ, s̄+ ϕ] as:

y(s) = ϕ+ s+

∫ s̄

s

χ(j)dj,

where χ(j) ≥ 0 for all j ∈ [s, s̄]. Then,

EQy = ϕ+ s+

∫ s̄

s

F̃Q(j)χ(j)dj.

The optimization problem (A.1) is equivalent to the following problem:

argmax
χ≥0

∫ s̄

s

F̃H(x)χ(x)dx, (A.5)

s.t.s+

∫ x

s

χ(j)dj ≤ x, ∀x ∈ [s, s̄] , (A.6)∫ s̄

s

[
F̃L(x)− ζF̃H(x)

]
χ(x)dx+ (1− ζ) (s+ ϕ) ≥ 0, (A.7)

χ(x) ≥ 0,∀x ∈ [s, s̄] (A.8)

34Equation (1) needs to hold for the residual equity tranche as well but this constraint is not binding.
35The uniqueness of equilibrium does not depend on the restriction of issuing monotone securities, and also holds when

the borrower issues Arrow securities against the dividend payment and the resale value of the asset. This result is available

upon request.

37



Note that the feasible set is compact, convex and nonempty so the optimization problem must have a

solution. Moreover, since the objective function is bounded above, the solution must be finite. The

Lagrangian of the optimization problem is

L (x; γ, µ, µχ) =

∫ s̄

s

F̃H(x)χ(x)dx+

∫ s̄

s

γ(x)

[
x− s−

∫ x

s

χ(j)dj

]
dx

+ µ

{∫ s̄

s

[
F̃L(x)− ζF̃H(x)

]
χ(x)dx+ (1− ζ) (s+ ϕ)

}
+

∫ s̄

s

µχ(x)χ(x)dx

=

∫ s̄

s

{
F̃H(x) + µ

[
F̃L(x)− ζF̃H(x)

]
− η (x) + µχ(x)

}
χ(x)dx

+ µ(1− ζ) (s+ ϕ) +

∫ s̄

s

η (x) dx,

where the second equality is obtained by using integration by parts on the second term of the Lagrangian,

and then setting η (x) =
∫ s̄+ϕ

x
γ(j)dj. Let L∗ = minγ≥0,µ≥0,µχ≥0 [maxχ≥0 L (x; γ, µ, µχ)] . Note that L∗

is the value of the original optimization problem. The quantity inside the curly brackets must be zero

or otherwise the value of the optimization problem would be infinite. Consider the following problem,

min
µ≥0

minη≥0,µx≥0 µ(1− ζ) (s+ ϕ) +

∫ s̄

s

η (x) dx

s.t. F̃H(x) + µ
[
F̃L(x)− ζF̃H(x)

]
− η (x) + µχ(x) = 0.

The value of this problem is L∗. Let Hµ (x) = F̃H(x)+µ
[
F̃L(x)− ζF̃H(x)

]
, and rewrite one more time

as:

min
µ≥0

minη≥0 µ(1− ζ) (s+ ϕ) +

∫ s̄

s

η (x) dx

s.t. η (x) ≥ Hµ (x) ,

and the constraint that η(x) is a decreasing function in x. Note, hµ (x) ≡ ∂Hµ(x)
∂x = − [fH (x) + µ (fL (x)− ζfH (x))],

Hµ (s) = 1 + µ [1− ζ] > 0 and Hµ (s̄) = 0.

Proof. If µ = 0 then hµ (x) < 0. If µ > 0 then

hµ (x) = −fH (x)

[
1 + µ

(
fL (x)

fH (x)
− ζ

)]
.

Since fL (x) /fH (x) is decreasing for x ∈ [s, s̄], hµ (x) can change sign from negative to positive only

once over [s, s̄]. Since hµ changes its sign at most once from negative to positive, and since Hµ (s) > 0

and Hµ (s̄) = 0, either there exists a unique x∗
µ ∈ (s, s̄) such that Hµ

(
x∗
µ

)
= 0, or Hµ (x) > 0 for all

x ∈ (s, s̄). In the latter case, we let x∗
µ = s̄.

38



Note that for given µ ≥ 0 optimal ηµ is given by:

ηµ (x) =

 Hµ (x) if x ≤ x∗
µ

0 if x > x∗
µ

.

Plugging this into the minimization problem we get:

min
µ≥0

µ(1− ζ)ϕ+

∫ x∗
µ

s

(
F̃H(x) + µ

[
F̃L(x)− ζF̃H(x)

])
dx.

The first order condition for this problem is:

(1− ζ)ϕ+

∫ x∗
µ

s

[
F̃L(x)− ζF̃H(x)

]
dx+

∂x∗
µ

∂µ
Hµ

(
x∗
µ

)
≥ 0

Because Hµ

(
x∗
µ

)
= 0,

(1− ζ)ϕ+

∫ x∗
µ

s

[
F̃L(x)− ζF̃H(x)

]
dx ≥ 0

with complementary slackness.

Let x∗ ∈ (s, s̄] be the unique s for which

(1− ζ)ϕ+

∫ x∗

s

[
F̃L(x)− ζF̃H(x)

]
dx = 0

if it exists. If

(1− ζ)ϕ+

∫ s̄

s

[
F̃L(x)− ζF̃H(x)

]
dx > 0

for all x ∈ [s, s̄], then x∗ = s̄.

If x∗ < s̄ then µ > 0, x∗
µ = x∗, and

L∗ = µ(1− ζ)ϕ+

∫ x∗

s

(
F̃H(x) + µ

[
F̃L(x)− ζF̃H(x)

])
dx =

∫ x∗

s

F̃H(s)ds.

If x∗ = s̄ then µ = 0, x∗
µ = s̄, and

L∗ =

∫ s̄

s

F̃H(s)ds.

To complete the proof, let D = x∗ + ϕ and note that χ (x) = 1 for x ∈ [s,D − ϕ) and χ (x) = 0 for

x ∈ [D − ϕ, s̄] achieves the value L∗ and it is feasible, and must be optimal for the original problem.

A.3 Proof of Theorem 1

Using Proposition 3, we write the designer’s problem as:

max
d∈[s,s̄]

∫ d

s

F̃H(s)ds (A.9)
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subject to

s+ ϕ+

∫ d

s

F̃L(s)ds− ζ

(
s+ ϕ+

∫ d

s

F̃H(s)ds

)
≥ 0. (A.10)

To obtain (A.9) and (A.10), we substitute (13) into the designer’s objective given in (A.1) and into (C.11)

which guarantees that the debt tranche is sold in a pooling equilibrium. Observe that to maximize (C.21)

designer must set d as large as possible subject to satisfying the constraint (A.10). We first show that

either there is a unique d that satisfies (A.10) with equality, or (A.10) is not binding. Let

T (x) ≡ (z − 1)

(
s+ ϕ+

∫ d

s

F̃H(s)ds

)
− λz

(∫ d

s

[
F̃H(s)− F̃L(s)

]
ds

)

Observe that,

T (s) = (z − 1) (ϕ+ s) > 0, T ′(x) = (z − 1)F̃H(x)− zλ
[
F̃H(x)− F̃L(x)

]
,

T ′(s) = z − 1 > 0, T ′(s) = 0,

T ′′(x) = −(z − 1)fH(x) + zλ [fH(x)− fL(x)] = fH(x)

[
z(λ− 1) + 1− zλ

fL(x)

fH(x)

]
.

When fL(x)
fH(x) is monotonically decreasing in s, T (x) is quasi-concave with T (s) > 0. So, there is either a

unique d that satisfies T (d) = 0 or T (x) > 0 for all x ∈ [s, s].

Case (i): Constraint (A.10) is binding. In this case the face value of the debt contract that solves

the security design problem is the unique solution to T (d) = 0:

ϕ =
z

z − 1
λ

∫ d

s

[
F̃H(s)− F̃L(s)

]
ds−

∫ d

s

F̃H(s)ds− s. (A.11)

In addition, the asset price ϕ satisfies (16). Substituting for qD and qE we rewrite (16) as:

ϕ =
β

1− βz

{
z [λELs+ (1− λ)EHs]− (1− λ)(z − 1)

∫ d

s

F̃H(s)ds

}
. (A.12)

Substituting ϕ in (A.11) using (A.12), the equilibrium can be solved by a single equation of d, Γ(d) = 0,

where

Γ(d) =
β

1− βz

{
z [λELs+ (1− λ)EHs]− (1− λ)(z − 1)

∫ d

s

F̃H(s)ds

}

− z

z − 1
λ

∫ d

s

[
F̃H(s)− F̃L(s)

]
ds+

∫ d

s

F̃H(s)ds+ s
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Observe that:

Γ′(d) =
β

1− βz
(1− λ)(z − 1)F̃H(d)− z

z − 1
λ
[
F̃H(d)− F̃L(d)

]
+ F̃H(d)

=

[
β

1− βz
(1− λ)(z − 1) + 1− z

z − 1
λ

]
F̃H(d) +

z

z − 1
λF̃L(d).

Γ′′(d) = −
[

β

1− βz
(1− λ)(z − 1) + 1− z

z − 1
λ

]
fH(d)− z

z − 1
λfL(d)

= fH(d)

{
z

z − 1
λ

[
1− fL(d)

fH(d)

]
− β

1− βz
(1− λ)(z − 1)− 1

}
Γ(s) = s

[
1 +

β

1− βz
(1− λ)(z − 1)

]
+

β

1− βz
[zλELs+ (1− λ)EHs] > 0

Γ′(s) =
β

1− βz
(1− λ)(z − 1) + 1 > 0

Γ′(s) = 0.

Once again Γ(s) is quasi-concave if fL(d)
fH(d) is monotonically decreasing in d. Because Γ(s) > 0, there is a

unique equilibrium. The constraint (C.22) is binding iff Γ(s) < 0. We rewrite Γ(s) as:

Γ(s) =
βz

1− βz
[λELs+ (1− λ)EHs]− z

z − 1
λ

∫ s

s

[
F̃H(s)− F̃L(s)

]
ds+

∫ s

s

F̃H(s)ds+ sL

=
EHs

(1− βz) (z − 1)

[
λz (1− β)

(
ELs

EHs
− 1

)
+ z − 1

]
.

Hence, Γ(s) < 0 if and only if
ELs

EHs
< 1− z − 1

zλ (1− β)
= κP .

Case (ii): Constraint (A.10) is not binding iff ELs
EHs ≥ κP . Then d = s̄ and ϕ = βz

1−βz [λELs+ (1− λ)EHs].
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