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1. Introduction1

This paper develops an analytical framework to combine the structural2

analysis based on dynamic stochastic general equilibrium (DSGE) models3

with reduced form analysis designed for digesting the real-time flow of data4

publication. The aim is to obtain early signals on the current state of the5

economy and read it through the lens of a structural model.6

Now-casting with DSGE models raises two challenges. First, these models7

are typically estimated with quarterly data on a balanced panel. Therefore,8

even if some of the model’s variables are available at a higher frequency,9

this information is lost. Second, DSGE models are estimated on a set of10

variables that is more limited than the information set used by markets and11

policymakers, who can exploit more timely information as it progressively12

becomes available throughout the quarter according to an asynchronous cal-13

endar of data publications. But, as we will show, this information is valuable14

not only for pure forecasting/now-casting purposes but also for identifying15

economically meaningful shocks in real time.16

An extensive recent now-casting literature, starting with Giannone, Re-17

ichlin and Small (2008), has made use of the state-space representation of18

reduced form statistical models to provide early estimates of the current19

value of key quarterly variables such as GDP in relation to the data flow. In20

this approach, given the model parameters, the newly available data, partic-21

ularly those published earlier than national account quarterly data, help to22

produce progressively more accurate estimates of the states and therefore of23
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the current quarter value of the data. This is true not only for “hard” data24

such as industrial production or employment but also for “soft” data such25

as surveys which are the first to provide information on the current quarter26

(for a survey see Banbura, Giannone and Reichlin, 2011). We exploit the fact27

that both the now-casting model of Giannone, Reichlin and Small (2008) and28

the generic DGSE have a state space form to link the two approaches in a29

formal way. This involves three elements.30

First, we derive the monthly dynamics of the model, addressing a classic31

problem of time aggregation (for an early discussion, see Hansen and Sargent32

1991). Our contribution here is to provide a method for assessing when a33

linear or linearised quarterly model has a unique monthly specification with34

real coefficients and to select the appropriate monthly specification, if there35

is more than one. Second, we make use of the monthly specification of the36

model to exploit the infra-quarter data which are available at a monthly37

frequency. Third, we augment it with data which are typically not included38

in structural models, because they do not have much relevance at a quarterly39

frequency, but that are potentially useful because of their timeliness. An40

obvious example are surveys whose value is only due to their short publication41

lag and, by the end of the quarter, do not convey any additional information42

beyond GDP growth itself.43

The empirical application provided in the paper illustrates the potential44

use of the method for both policy modeling and academic research. We derive45

the monthly state-space that coincides, when put on quarterly data, with a46
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variant of the model in Gaĺı, Smets and Wouters (2012) that incorporates47

financial frictions as in Bernanke, Gertler and Gilchrist (1999) and augment48

it with auxiliary monthly macro indicators potentially useful for now-casting.49

We assess the method’s performance in terms of forecast accuracy both on50

average over the whole evaluation sample, and in the specific episode of the51

Lehman Bros. crisis. We find that the now-cast and forecast accuracy of the52

monthly model augmented with the auxiliary variables is comparable to that53

of the survey of professional forecasters (SPF) and greatly improves over the54

quarterly model. These results are in line with similar findings for reduced-55

form models (e.g. Giannone, Reichlin and Small, 2008). But here, crucially,56

we have a structural model, so we can also exploit the real-time information57

flow to now-cast unobservables variables that are useful for understanding58

the economy’s dynamics, such as the output gap or the shocks that drive the59

model.60

To exploit further the possibilities that our framework offers for structural61

analysis, we focus on the Lehman Bros. crisis and we compare the augmented62

monthly model’s storytelling in real-time to the one we would have obtained63

conditioning on the now-casts of the SPF, as suggested in Del Negro and64

Schorfheide (2013). Thanks to the auxiliary information, our model is able to65

better identify, in real time, the shocks driving the business cycle. Moreover,66

our approach delivers an interpretation of the auxiliary variables through the67

lens of the model.68

The paper is organized as follows. In the first section we illustrate the69
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methodology, in the second the data and the structural model, in the third70

we provide a forecast evaluation while in the fourth we use the framework71

for real time structural analysis. Finally we comment the relation of our72

approach to the related literature and conclude.73

2. The methodology74

2.1. From monthly to quarterly specification75

In what follows, we show how to obtain the monthly specification of the76

quarterly DSGE model that has real coefficients and we discuss under which77

conditions such a monthly model exists and is unique. We then discuss how78

to link the monthly model with the auxiliary variables for now-casting.79

We consider structural quarterly models whose log-linearized solution has80

the form:81

stq = Tθstq−1 + Bθεtq (1)

Ytq = M0,θstq +M1,θstq−1

where tq is time in quarters, Ytq = (y1,tq , ..., yk,tq)
′ is a set of observable82

variables which are transformed to be stationary, st are the states of the83

model and εt are structural orthonormal shocks. The autoregressive matrix84

Tθ, the coefficients Bθ, M0,θ and M1,θ are function of the deep, behavioural85

parameters of the DSGE model, which are collected in the vector θ. M1,θ86

accounts for the fact that often a part of the observables are defined in first87
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differences. We consider the model and its parameters as given. The vector88

st can also include the lags of the state variables and shocks.189

Let us define tm as the time in months and denote by Ytm = (y1,tm , ..., yk,tm)′90

the vector of the possibly latent monthly counterparts of the variables that91

enter the quarterly model. The latter are transformed so as to correspond92

to a quarterly quantity when observed at end of the quarter, i.e. when tm93

corresponds to March, June, September or December (e.g. see Giannone,94

Reichlin and Small, 2008).95

For example, let yi,tm be the unemployment rate utm and suppose that it

enters the quarterly model as an average over the quarter, then:

yi,tm =
1

3
(utm + utm−1 + utm−2)

In accordance with our definition of the monthly variables, we can define the

vector of monthly states stm as a set of latent variables which corresponds to

its quarterly model-based concept when observed on the last month of each

quarter. Hence, it follows that our original state equation

stq = Tθ stq−1 +Bθεtq

1The inclusion of the states and their lag in the observation equation is useful to model
variables that enter the system in difference. An alternative consists in including the
differences of the states as additional states and setting M0,θ = Sk,n and M0,θ = 0,
where Sk,n is a matrix of zeros and ones that just selects the appropriate rows of stq . The
problem with this approach is that it generates more redundant states and this makes
more difficult to derive the minimal state representation, a step that as we will see is
particularly important in the proposed procedure.

6



can be rewritten in terms of the monthly latent states as96

stm = Tθ stm−3 +Bθεtm (2)

when tm corresponds to the last month of a quarter, i.e. when tm corresponds97

to March, June, September or December.98

We assume that the monthly states can be written as99

stm = Tm stm−1 + Bmεm,tm (3)

and that Tm is real and stable and εm,tm are orthonormal shocks2. This100

implies:101

stm = T 3
m stm−3 + [Bmεm,tm + TmBmεm,tm−1 + T 2

mBmεm,tm−2]. (4)

We are interested in finding a mapping from the quarterly model to the102

monthly model: the relation between equations (1), or equivalently (2), and103

(4) imply that the monthly model can be recovered from the following equa-104

2If the variables considered are stocks, the formulation (3) implies no approximation,
because selecting a lower frequency just means sampling at a different frequency. If instead
the variables considered are flows, then our definition of the monthly variables as an
average over the quarter implies that we are introducing a non-invertible moving average
in the growth rates. Therefore modeling this monthly concept as autoregressive introduces
some misspecification. Doz, Giannone and Reichlin, 2012 show the effect of such miss-
specification is small.
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tions:105

Tm = T
1
3
θ (5)

vec(BmB′m) = (I + Tm ⊗ Tm + T 2
m ⊗ T 2

m)−1vec(BθB′θ). (6)

From (5) it is clear that finding such mapping is equivalent to finding the106

cube root of Tθ.107

If the autoregressive matrix of the transition equation is diagonalizable,

i.e if there exist a diagonal matrix D and an invertible matrix V such that

Tθ = V DV −1, then the cube root of Tθ can be obtained as

T
1
3
θ = V D

1
3V −1,

where D
1
3 is a diagonal matrix containing the cube roots of the elements of108

D. The real elements of D, which are associated with real-valued eigenvec-109

tors, have a unique real cube root, which is the only one that gives rise to110

real values when combined with its associated eigenvector. For the eigenval-111

ues that are complex conjugate instead there are three complex cube roots.112

These, when combined with their associated eigenvalue, return a real-valued113

vector. So, effectively, if k is the number of complex conjugate couples of114

eigenvalues in D, then there will be 3k real-valued cube roots for Tθ. To115

select among these alternative cube roots of Tθ we proceed as follows. In the116

case of real eigenvalues, we simply select their real cube root. In the case of117
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complex conjugate couples, we choose the cube root which is characterized118

by less oscillatory behaviour, i.e. the cube root with smaller argument.119

If monthly observations for some variables are available, we can use them120

to identify the cube root by choosing the one that maximizes the likelihood of121

the data. The cube root selected is generally unique. Indeed, Anderson et al.122

(2014) have shown that having mixed frequency observation typically implies123

identifiability. In our case the two procedures produce the same results.124

If Tθ is not diagonalizable, it is possible to obtain the Jordan form3 and to125

derive the cube root based on that. An interesting result is that the procedure126

described for diagonalizable matrices extends to this situation in most cases127

(see Higham, 2008). However there is a caveat that is of particular relevance128

for DSGE models. Namely, Higham (2008) proves that there exists no p-th129

(so also no cube) root of a matrix that has zero-valued eigenvalues that are130

defective, i.e. that are multiple but not associated to linearly independent131

eigenvectors. In the case of DSGE models, this situation arise mainly, but not132

3Any matrix A ∈ Cn×n can be expressed in the canonical Jordan form

Z−1AZ = J = diag(J1, J2, ..., Jp),

with

Jk = Jk(λk) =


λk 1

λk
. . .

. . . 1
λk

 ∈ Cmk×mk ,

where Z is non-singular and m1 +m2 + +...+mp = n with p the number of blocks. We
will denote by s the number of distinct eigenvalues (see, for example, Higham (2008) for
further details).
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exclusively, when there are redundant states. It is hence important to work133

on the model to try to reduce it to a minimal state space. When defective134

zero-valued eigenvalues appear even in the transition matrix of the minimal135

state space (for example because of the choice of observables), then we suggest136

considering whether there are ways to render the model diagonalizable.137

We can obtain BmB′m as the solution of equation (6). As we are interested138

in recovering Bm, we make the additional assumption that the three monthly139

shocks are the same and coincide with the quarterly shock, i.e. εm,tm =140

εm,tm−1 = εm,tm−2 = εtq . Under this assumption, we can obtain Bm directly141

from the following equation:142

Bm + TmBm + T 2
mBm = Bq.

Let us now turn to the equation that links the states to the observables.143

We start by analyzing the (not very realistic) case in which all variables are144

observable at monthly frequency. The monthly observation equation would145

then be:146

Ytm =Mmstm (7)

where

Mm =
(
M0,θ + 0 · L+ 0 · L2 +M1,θL

3
)

The equations (3) and (7) therefore describe the monthly dynamics that147

are compatible with the quarterly model.148

10



2.2. Mixed frequency and jagged edged data149

If all the observables of the model were available at a monthly frequency,150

we could simply use the monthly model defined by equations (3) and (7) to151

immediately incorporate this higher frequency information. However, some152

variables - think of GDP, for example - are not available at monthly fre-153

quency. So let us assume that the variable in the i-th position of the vector154

of observables Ytm , i.e. yi,tm , is not available at a monthly frequency, but155

only at the quarterly frequency. This means that yi,tm is a latent variable156

when tm does not correspond to the end of a quarter. Moreover, due to157

the unsynchronised data release schedule, data are not available on the same158

span (the dataset has jagged edges). The unavailability of some data does159

not prevent us from still taking advantage of the monthly information that160

is available using a Kalman filter. To do so, we follow Giannone, Reichlin161

and Small (2008) and define the following state space model162

stm = Tm stm−1 + Bmεm,tm

Ytm =Mm(L)stm + Vtm

where Vtm = (v1,tm , ..., vk,tm) is such that var(vi,tm) = 0 if yi,tm is available163

and var(vi,tm) =∞ otherwise.164

2.3. Bridging the model with the additional information165

We denote by Xtm = (x1,t, ..., xn,t)
′ the vector of these auxiliary stationary166

monthly variables transformed so as to correspond to quarterly quantities at167
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the end of each quarter, as described above.168

Let us now turn to how we incorporate the auxiliary monthly variables in169

the structural model. As a starting point we define the relation between the170

auxiliary variables Xtq and the model’s observable variables at a quarterly171

frequency:172

Xtq = µ+ ΛYtq + etq (8)

where etq is orthogonal to the quarterly variables entering the model. We will173

use this equation to estimate the coefficients Λ and the variance-covariance174

matrix of the shocks E(etqe
′
tq) = R. We use a flat prior on all the parameters,175

so that the posterior model corresponds to the OLS estimate.176

Let us now focus on incorporating the auxiliary variables in their monthly177

form. As stressed above, Xtm = (x1,t, ..., xn,t)
′ is the vector of these auxiliary178

stationary monthly variables transformed so as to correspond to quarterly179

quantities at the end of each quarter. We can relate Xtm to the monthly180

observables Ytm using the equivalent of equation (8) for the monthly frequency181

(the bridge model):182

Xtm = µ+ ΛYtm + etm (9)

where etm = (e1,tm , ..., ek,tm) is such that var(ei,tm) = [R]i,i if Xi,tm is available183

and var(ei,tm) =∞ otherwise. In this way we take care of the problem of the184

jagged edge at the end of the dataset, due to the fact that the data is released185

in an unsynchronized fashion and that the variables have different publishing186
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lags (e.g. capacity utilization releases refer to the previous month’s total187

capacity utilization, while the release of the Philadelphia Business Outlook188

Survey refers to the current month). We will use equation (9) to expand189

the original state-space derived in Section 2.2. Summing up, the state space190

takes the form:191

stm = Tm stm−1 + Bmεm,tm

Ytm = Mm(L)stm + Vtm (10)

Xtm − µ = ΛYtm + etm

where Vtm and etm are defined above. The state-space form (10) allows us to192

account for and incorporate all the information about the missing observables193

contained in the auxiliary variables.194

The choice of modeling Xtm as solely dependent on the observables Ytm195

rather than depending in a more general way from the states stm , is motivated196

by the fact that we want the auxiliary variables to be relevant only in real197

time, but we do not want them to affect the inference about the history of198

the latent states and shocks. In this way the procedure is minimally invasive199

with respect to the original quarterly model.200
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3. Empirical analysis201

3.1. The structural model202

We implement the methodology described above on a variant of the203

medium-scale model presented in Gaĺı, Smets and Wouters (2012; henceforth204

GSW) that includes financial frictions as in Bernanke, Gertler and Gilchrist205

(1999). The GSW reformulates the well known Smets-Wouters (2007; hence-206

forth SW) framework by embedding the theory of unemployment proposed207

in Gaĺı (2011a,b). The main difference of the GSW with respect to the208

SW is the explicit introduction of unemployment, and the use of a utility209

specification that parameterizes wealth effects, along the lines of Jaimovich210

and Rebelo (2009). We add the financial frictions building on the work of211

Christiano, Motto and Rostagno (2003), De Graeve (2008) and Del Negro,212

Hasegawa and Schorfheide (2014). In this set-up, banks collect deposits from213

households and lend to entrepreneurs, who are hit by idiosyncratic shocks214

to their net wealth. The entrepreneurs use a mix of these funds and their215

wealth to acquire physical capital, but because of their idiosyncratic shocks,216

their revenues may be too low to repay the loans. The banks therefore protect217

themselves charging a spread over the deposit rate, which will be a function of218

the entrepreneurs’ leverage and riskiness. We present the main log-linearized219

equations of the model in Appendix A and refer to Gaĺı, Smets and Wouters220

(2012) for an in depth discussion of the model.221

The model is estimated on nine data series for the US: per capita GDP222

growth, per capita consumption growth, per capita investment growth, a223
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measure of real wage inflation based on compensation per employee, the GDP224

deflator inflation, per capita employment, the policy rate, the unemployment225

rate and a measure of the spread, namely, the annualized Moody’s Seasoned226

Baa Corporate Bond Yield spread over the 10-Year Treasury Note Yield227

at Constant Maturity. The policy rate is the effective Fed Funds rate in228

the part of the sample when it is not constrained by the zero lower bound.229

From January 2009 onward, the policy rate corresponds to the shadow rate230

computed by Wu and Xia (2014), which is intended to capture the effects231

on the term structure of unconventional policy tools such as large-scale asset232

purchases and forward guidance.233

GDP growth, investment growth, wage growth are available at a quarterly234

frequency only, while nominal consumption growth, employment, unemploy-235

ment, the policy rate and the spread are available at monthly frequency, at236

least. The model however is specified and estimated at quarterly frequency:237

we report the model’s priors in Appendix A, while the model’s posterior dis-238

tribution is estimated annually at the beginning of each year of the evaluation239

sample, which goes from 1995 to 2014.240

The model includes nine structural shocks: risk premium, monetary pol-241

icy, exogenous spending, investment-specific technology shock, neutral tech-242

nology, price mark-up, wage mark-up, net worth and exogenous labour supply243

shocks.4 Figure 1 shows the decomposition of GDP growth.244

4All the shocks are AR(1) bar the monetary policy shock, which is white noise.
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Figure 1: Shock decomposition of quarterly GDP growth

Results confirm that over the whole sample the investment specific shock245

plays a sizeable role (as in Justiniano, Primiceri and Tambalotti, 2010)246

though the presence of the net worth shock in the model, as in Del Ne-247

gro, Hasegawa and Schorfheide (2014), reduces its importance. The presence248

of the labour supply shock in the GSW somewhat reduces the importance249

of the wage mark-up shocks in the SW first pointed out by in Chari, Kehoe250

and Mc Grattan (2009).251

Interestingly, our model attributes the bulk of the fall in GDP at the end252

of 2008 (highlighted in red) to three shocks: i) the risk premium shock, a per-253

turbation to agents intertemporal Euler equation governing the accumulation254

of the risk-free asset, which plausibly captured the changes to risk attitudes255

brought about by the collapse of Lehman Brothers; ii) the investment spe-256
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cific technology shock, which also affects the net worth of the entrepreneurs257

in the model, and iii) the neutral technology shock. Our findings are broadly258

consistent with those of Christiano, Eichenbaum and Trabandt (2015), who259

analyse the Great Recession through the lens of a state-of-the-art New Key-260

nesian model and attribute the bulk of the movements in aggregate real261

variables and inflation to a consumption wedge, a financial wedge and the262

neutral technology shock.263

3.2. The auxiliary variables264

We consider a dozen of additional macro and financial variables that are265

monitored more closely by professional and institutional forecasters5. These266

include real indicators (such as industrial production, house starts, total267

construction, etc...), price data (CPI, PPI, PCE inflation), financial market268

variables (the fed funds rate and the BAA-AAA spread), labour market vari-269

ables, credit variables, a measure of uncertainty (Baker, Bloom and Davis270

(2015) economic policy uncertainty index) and some national accounts quan-271

tities. A full list and description of these series is reported in Table B.4272

in Appendix B, which describes a stylised calendar of data releases where273

the variables have been grouped in 38 clusters according to their timeliness.274

This allows us to relate the changes in the forecast with groups of variables275

5For a discussion of alternative ways of selecting the auxiliary variables, see Cervena
and Schneider (2014), who apply the methodology proposed in the earlier version of this
paper (Giannone, Monti and Reichlin, 2010) to a medium-scale DSGE model for Austria
and address the issue of variable selection by proposing three different methodologies for
the subsample selection.
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with similar economic content. For example, although the housing sector is276

not included in the model, we can capture information about it thanks to277

the auxiliary variables. Similarly, surveys can be very informative, because278

they give a measure of changes in the private agents’ sentiments that is not279

explicitly modelled in the standard log-linearised DSGE.280

In the first column of Table B.4 we indicate the progressive number as-281

sociated to each “vintage” or release cluster, in the second column the data282

release, in the third the series and in the fourth the date the release refers283

to, which gives us the information on the publication lag. We can see, for284

example, that the Philadelphia Fed Survey is the first release referring to the285

current month m and it is published on the third Thursday of each month.286

Hard data arrive later. For example, the first release of industrial production287

regarding this quarter is published in the middle of the second month of the288

quarter. GDP, released in the last week of the first month of the quarter289

refers to the previous quarter.290

Figure 2 reports the portion of the variance of the one-quarter-ahead291

forecast of the auxiliary variables that is attributed to each of the shocks292

in the model. Looking at the variance decomposition provides interesting293

insights on which kind of information the auxiliary variables deliver. Notice294

that in addition to the structural shocks these variables are also affected by an295

idiosyncratic shock. The larger the idiosyncratic shock the less informative296

is a variable about the model dynamics.297

Let us focus on the three shocks that are driving the fall in GDP in298
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Figure 2: Forecast error variance decomposition of the auxiliary variables one
quarter ahead.

2008Q4, namely the risk premium shock, the investment specific technology299

shock and the neutral technology shock. The figures show that the the risk300

premium shock is most relevant for nominal variables (such as CPI inflation301

and the PCE inflation) and surveys on the real economy such as the PMIs.302

On the other hand, the variables that are significantly affected by the neutral303

technology shock are mostly real, like industrial production, housing starts,304

total construction and the surveys (PHBOS and PMI).305

3.3. The derivation of the monthly model306

Let us now consider the computation of monthly version of the model.307

We first verify that Tθ in (1) can be diagonalized. Indeed it can, so we obtain308

the matrix D of eigenvalues and the corresponding matrix V of eigenvectors309
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that satisfy Tθ = V DV −1. We identify the model’s real-valued cube root as310

described in the previous Section and we also verify that it is indeed the one311

that maximizes the likelihood.312

We then produce the now-cast with the monthly model with and without313

auxiliary variables and compare it both to the SPF’s forecasts and to the314

forecast produced with the quarterly model, in which the last data point315

available is inputed for the higher frequency variables, as is generally done316

in policy institutions. And we will also obtain real-time estimates of purely317

model-based concepts like the output gap. As we will show in the next318

Section, simply taking advantage of all the information available about the319

observables at a monthly frequency greatly increases the forecasting perfor-320

mance of the model. Incorporating information from key macro variables321

that are more timely also helps, especially for GDP growth.322

4. Forecast Evaluation323

In this Section we evaluate the forecasting performance of the monthly324

model augmented by auxiliary variables (M Augmented) and compare it with:325

the quarterly DSGE model based on the balanced panel (Q balanced), and326

the monthly model (M model). The forecasts are evaluated at different dates327

within the quarter in order to assess the effect of timely monthly information328

on the accuracy of the forecasts. We also benchmark these forecasts against329

the survey of professional forecasters (SPF) although this is only possible at330
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the middle of the quarter when the such surveys are published6.331

We show both point forecasts and density forecasts, focusing on the evalu-332

ation sample 1995Q1-2014Q2. Over this sample, the model is estimated once333

a year using data from 1964 to the year before the one we are evaluating.334

Due to availability issues we use data from 1982 to estimate the relationship335

between the auxiliary variables and the model (Λ in system (10)). Because336

only few of the auxiliary variables we consider are available in real-time from337

the beginning of the evaluation sample in 1995Q1, we perform the exercise338

in pseudo-real-time: we use the latest vintage of data, but, at each point of339

the forecast horizon, we only use the data available at the time.340

4.1. Point Forecasts341

In the main text we present now-casts and forecasts of per capita real342

GDP growth, GDP deflator inflation, unemployment and the output gap.343

In Appendix we report further results for consumption growth, the policy344

rate, unemployment and GDP deflator inflation. The figures and tables in345

this section report the root mean square forecast error (RMSFE) for the346

different models. In order to align the SPF’s and the models’ information347

sets as closely as possible we display it only from cluster 18 to cluster 20, i.e.348

around the beginning of the second month of the quarter when the SPF’s349

forecasts are published.350

6Where necessary, the SPFs forecast are adjusted by the same population growth index
used in the model, in order to align them as much as possible with the models’ forecasts,
which are in per capita terms.
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Figure 3: RMSFE of GDP growth now-casts throughout the quarter for the quarterly
model (Q, the dashed line), the monthly model (M, the purple line) and the monthly
model augmented with the auxiliary information (M Augmented, the red bars). We also
report the SPF now-casts, in blue with an asterisk marker.
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Figure 4: RMSFE of the now-cast of the output gap throughout the quarter for the
quarterly model (Q, the dashed line), the monthly model (M, the purple line) and the
monthly model augmented with the auxiliary information (M Augmented, the red bars).
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The forecasts are updated 38 times throughout the quarter, corresponding351

to the stylized calendar B.4 described in Appendix B. We can thus associate352

to each update of the forecasts a date and a set of information being re-353

leased. We first report how the root mean square forecast error (RMSFE) of354

our forecasts and now-casts changes with new information releases. So the355

horizontal axis of the Figures 3 -4 indicate the grouping of releases corre-356

sponding to the calendar. For example, clusters 5, 18, and 30 correspond to357

the release of the employment situation in each of the three months of the358

quarter, release 11 corresponds to the flash estimate of GDP for the previous359

quarter and 14, 26 and 38 correspond to the last day of each month where360

we include the financial data.361

Notice that the now-cast of the quarterly model that uses the balanced362

panel (Q balanced) can be updated only once in the quarter, when the GDP363

for the past quarter is released (cluster 10). The now-casts of the monthly364

model (M model) is updated 9 times throughout the quarter, at each release365

of the variables that are released at least monthly - consumption (12, 24, 36),366

the employment variables (5, 18, and 30) and the term structure variables367

(14, 26 and 38). The monthly model augmented by auxiliary variables (M368

Augmented) is updated at each new release. The number of jumps in the root369

mean square forecast errors (RMSFE) of each of the now-casts in Figures 3-4370

reflects how many times the now-cast is updated throughout the quarter.371

Results indicate that the monthly specification is very useful especially372

when the focus is on a variable available at the monthly frequency such373
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SPF Q M M Augmented

GDP growth
5 - 0.6557 0.5751 * 0.5754**
20 0.4841** 0.5662 0.5520 0.5121 *
30 - 0.5662 0.5219 * 0.4611***
38 - 0.5662 0.5027 *** 0.4338 ***

Unemployment
5 - 0.2556 0.0607*** 0.0607***
20 0.0190*** 0.0587 0.0241** 0.0253**
30 - 0.0587 0.0066*** 0.0065***
38 - 0.0587 0.0071*** 0.0070 ***

GDP Deflator inflation
5 - 0.0573 0.0568 0.0580
20 0.0389* 0.0446 0.0434 0.0459
30 - 0.0446 0.0449 0.0489
38 - 0.0446 0.0482 0.0517

Table 1: RMSFE at representative vintages for GDP growth, the unemployment
rate and GDP deflation inflation now-casts.The first column indicates the vintages.
We indicate with ***, ** and * the forecasts that are statistically significantly different
from the forecast produced by the model with the balanced panel (Q, second column in
the tables) with a 1%, 5% and 10% level, respectively, based on the Diebold-Mariano
(1995) test, where we use Newey-West standard errors to deal with the autocorrelation
that multi-period forecast errors usually exhibit. The bold type face is used to identify
forecasts that are statistically significantly better.

as unemployment (Table 1) and the output gap (Figure 4). Recall that374

the latter is defined as the difference between actual output and the output375

that would prevail in the flexible price and wage economy in the absence376

of distorting price and wage markup shocks which, in the GSW model, is377

very closely aligned to the total employment series, also available monthly7.378

In this case the main advantage comes from the ability to account for the379

7Since the output gap is unobserved, we take it’s ex-post estimate - i.e. the estimate
produced by the quarterly DSGE model using all available data up to 2014Q2 - to be the
“true” one, and we construct the RMSFE of the now-cast produced by the alternative
models we consider with respect to it.
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monthly observables in a more consistent way, rather than from the real-time380

data flow.381

For quarterly GDP, on the other hand, we can see that the best per-382

formance is generated by the monthly model augmented by the auxiliary383

variables (see Figure 3). The RMSFE errors decline with the arrival of new384

information throughout the quarter confirming results obtained in reduced385

form models as surveyed by Banbura, Giannone and Reichlin (2011). The386

importance of the monthly data flow is confirmed by Figure 5 which reports387

the now-cast for the GDP growth for four representative vintages produced388

with information sets 5, 20, 30 and 38. Notice that with the monthly model389

with the auxiliary data we would have had a much timelier assessment of the390

depth of the Great Recession, as well as a better assessment of the recovery.391

The results on the GDP deflator inflation are very disappointing for all392

models. All of them, including the SPF, have a similar now-casting perfor-393

mance the (Table 1). This is not surprising since this variable is itself flat394

over the forecasting sample.395

In Appendix C we perform the same evaluation for the two sub-samples,396

1995-2007 and 2008-2014. We show that the relative forecasting performance397

of the models is quite different before and after the Great Recession for most398

variables and that in the second sub-sample there is a significant deterioration399

of performances.400
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Figure 5: The now-cast of annualised GDP growth for 4 representative vintages.

Vintage 5 corresponds to the release of the employment data on the first Friday
of the first month of the quarter. Vintage 20 is the middle of the second month of
the quarter and we take it to correspond to the moment at which the SPF make
their forecast. Vintage 30 corresponds to the relase of the Employment data at
the beginning of the third month of the quarter. The lower right panel correspond
to the last day of the quarter (vintage 38). The shaded area indicates the NBER
recession dates.
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GDP growth and Unemployment All real variables
Q M M Augmented Q M M Augmented

5 -1.7632 -1.2326 -1.2297 -9.9931 -8.8426 -8.6282
20 -1.225 -1.0894 -1.0651 -7.8794 -7.3741 -7.1988
30 -1.225 -0.9269 -0.8523 -7.8794 -6.1578 -5.9231
38 -1.225 -0.9054 -0.7819 -7.8794 -5.4332 -4.9318

Table 2: Log predictive score of the now-cast of unemployment and GDP growth
and for all on the models’ real variables at representative vintages.The first
column indicates the vintages. Vintage 5 corresponds the release of the employment data
on the first Friday of the first month of the quarter. Vintage 20 is in the first half of the
the second month of the quarter and we take it to correspond to the moment at which the
SPF make their forecast. Vintage 30 corresponds to the relase of the Employment data at
the beginning of the third month of the quarter. Vintage 38 is the last day of the quarter.

4.2. Density Forecasts401

In order to characterize and evaluating the uncertainty associated with402

the predictions of the model we compute the predictive density of the models403

and the associated log predictive scores. The log predictive score is a widely404

used scoring rule, used to evaluate the quality of probabilistic forecasts given405

a set of outcomes. Formally it is defined here as:406

Sh(M) =
1

Nh

T+Nh−1∑
t=T

ln p(yt+h|Y1:T−1,M), (11)

where h is the forecast horizon, T is the beginning of the forecast horizon407

and ln p(yt+h|Y1:T−1,M) is the marginal likelihood for h = 1.408

Table 2 reports the log predictive score produced after each of the 4409

representative clusters of releases (5,20,30,38), respectively for the now-cast410

of unemployment and GDP growth and for all on the models’ real variables,411
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i.e. all variables but the interest rate and the spread. In both cases the two412

monthly models are the best performing and the M augmented is consistently413

better than the monthly model that does not exploit the panel.414

4.3. Exploiting the model’s structure in real-time415

One of the key advantages of our methodology is the ability to exploit the416

structure of the model in real time. As we have seen, we can obtain real-time417

estimates of unobservable variables such as the output gap and update them418

at each information release (see Figure 4). We can also use the model and419

the structural shocks it identifies to interpret the signal coming from the data420

in real time.421

The decomposition of the fluctuations in terms of structural shocks changes422

with the data arrival in real time. Let us focus, for example, on the story be-423

hind the drop in GDP in the last quarter of 2008Q4, when Lehman Brothers424

collapsed. Let’s now compare the ex-post decomposition reported in Figure425

1 with that obtained in real time. We place ourselves at the beginning of426

July 2008 and look at how each of the models would have attributed the427

shocks according to the information flow up until March 2009 in the case of428

the quarterly balanced model (top panel of Figure 6) and the monthly model429

with auxiliary information (bottom panel). We also generate the same graph430

for the quarterly model conditioned on the now-casts produced by the SPF431

(middle panel of Figure 6). Conditioning on SPFs has been suggested by432

Del Negro and Schorfheide (2013) as a way of indirectly exploiting timely433
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information (as preprocessed by the SPF) in the forecast. On the right side434

of these graphs, we add the ex-post shock decomposition highlighted in red435

in Figure 1 for ease of comparison.436

One of the key messages emerging from the comparison of the graphs in437

Figure 6 is that accounting for new information in a timely fashion not only438

delivers an early signal on the state of the economy but also on its drivers.439

In other words, it takes time to understand why the economy is slowing and,440

in real time, there is significant uncertainty surrounding the decomposition441

of the shocks. Exploiting high frequency information significantly decreases442

this uncertainty: we converge a few months in advance to the ex-post decom-443

position. This aspect of real time analysis has been completely disregarded444

in the literature.445

The charts also tell us that simply conditioning on the SPF, although446

providing a forecast which is at least as accurate than that our M Augmented447

framework, does not help in recognising in real-time the shocks that are448

driving the fall of GDP in 2008Q4. Clearly, each of the the auxiliary variables449

carries a meaningful signal which would have been lost by simply conditioning450

on the view of the SPF, who pre-process the available information into a451

single now-cast for each observable. This confirm results in Monti (2010)452

showing that conditioning on the SPF as if they were actual data rather453

than forecasts8 can be misleading.454

8Del Negro and Schorfheide (2013) call this the news implementation of the condition-
ing as opposed to the noise implementation, in which the SPF now-casts are considered

29



2008−7−1 2008−8−16 2008−9−30 2008−11−17 2008−12−30 2009−2−16 2009−3−31
−4

−3.5

−3

−2.5

−2

−1.5

−1

−0.5

0

0.5

1
Shock decomposition for GDP growth in 2008Q4 at various release dates between Jul 2008 and Mar 2009 − Balanced Q model

 

 

2008Q4

Ex−post decomposition
 in 2014Q2

 

 

risk premium shock
inv specific tech. shock
gov’t spending shock
neutral tech. shock
price mark−up shock
labour supply shock
monetary policy shock
wage mark−up shock
net worth shock
initial condition

2008−7−1 2008−8−16 2008−9−30 2008−11−17 2008−12−30 2009−2−16 2009−3−31
−4

−3.5

−3

−2.5

−2

−1.5

−1

−0.5

0

0.5

1
Shock decomposition for GDP growth in 2008Q4 at various release dates between Jul 2008 and Mar 2009: conditioning on SPF

 

 

2008Q4

Ex−post decomposition
 in 2014Q2

 

 

2008−7−1 2008−8−16 2008−9−30 2008−11−17 2008−12−30 2009−2−16 2009−31−3
−4

−3.5

−3

−2.5

−2

−1.5

−1

−0.5

0

0.5

1
Shock decomposition for GDP growth in 2008Q4 at various release dates between Jul 2008 and Mar 2009: M Augmented

 

 

2008Q4

Ex−post decomposition
 in  2014Q2                   

 

 

Figure 6: Shock decompositions in real tim for Q, Q+SPF and M Augmented models
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In particular, the shocks decomposition obtained by conditioning on the455

SPF grossly underestimates the effect of the risk premium shock and, more456

importantly, almost misses the negative contribution of the neutral technol-457

ogy shock. The monthly model with auxiliary model identifies the negative458

contribution of the technology shock to the slowdown because the latters, as459

we have seen earlier, have a large impact on real variables, and the auxiliary460

variables related to those (e.g. surveys) are signaling at an early stage that461

there is a significant slowdown of the real economy and not only a large shock462

in the risk premium.463

5. Discussion and relation with the literature464

The approach proposed in this paper adds a new complementary perspec-465

tive to related work in this area. A natural alternative to our approach would466

have been to specify the DSGE model at the monthly frequency and deal with467

the mixed frequency problem arising from the fact that some key macro vari-468

ables are quarterly - like GDP and the GDP deflator - using, for example, the469

blocking technique described in Zamani et al. (2011). However, the problem470

with specifying the DSGE at a monthly frequency is that most DSGE mod-471

els are quarterly and there is very little empirical experience regarding the472

specification of the behavioral equations and the setting of the priors in a473

monthly set-up. The few papers that estimate monthly DSGE models (e.g.,474

noisy measures of the true signal.
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Hilberg and Hollmayr 2013) somewhat mechanically adjust the parameters475

from their quarterly specification to the monthly equivalent. While this is476

relatively straightforward, it is much less obvious that the specification of the477

driving processes would carry through unchanged when specified at higher478

frequency.479

A different motivation for considering mixed frequency data in structural480

models is to improve the estimation of the structural parameters of the quar-481

terly DSGE by alleviating the temporal aggregation bias and mitigating iden-482

tification issues (see Foroni and Marcellino, 2013, and Kim, 2010). In that483

approach monthly data are used to obtain better estimates of the parameters484

of the model. Contrary to this, and for the same reasons explained above,485

we keep the parameters estimated via the quarterly model untouched and486

use the data for obtaining progressively better estimates of the states, given487

those parameter estimates. Our approach is desirable especially in policy488

institutions where the DSGE models used for forecasting are generally very489

complex, they might have taken several months, or even years, to agree on,490

build and estimate and therefore require a lot of time and effort to change,491

re-estimate, and explain anew to the policymakers. In such circumstances it492

is unpractical and possibly unreasonable to re-estimate the model frequently.493

This makes our framework more desirable.494

Finally, let us comment on the aspect of our approach which combines495

the structural model with auxiliary data. A similar idea is in Boivin and496

Giannoni (2006) who have proposed to estimate structural DSGE model by497
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treating observable variables as imperfect measures of the economic concepts498

of the model. In this context, they show that augmenting the model with499

quarterly auxiliary variables can improve the identification of the states of the500

model and hence improve the estimation of the structural parameters in the501

quarterly model. Contrary to their approach, our emphasis is on exploiting502

the timelines of un-modelled timely data in order to obtain early estimates503

of modeled key variables, such as GDP growth, or latent concepts, such as504

the output gap, and provide a structural interpretation in real time.505

The framework proposed here builds on our early work in Giannone,506

Monti and Reichlin (2010). In the present work we have solved an important507

identification problem arising to time aggregation which limited the applica-508

bility of the framework and provide a precise analytical solution which gives509

identification conditions that can be tested in practice. We believe that this510

solution is of more general interest than the specific application of this paper.511

Furthermore the empirical analysis highlights a wide range of applications of512

general use for policy and academic research which were not explored in that513

early work.514

6. Conclusions515

The paper develops a framework to combine the insights provided by516

structural models and the real time analysis of the flow of data publications517

(now-cast).518

In this framework we “borrow” the quarterly parameter estimates of the519
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DSGE and we provide a mapping from a quarterly dynamic stochastic gen-520

eral equilibrium (DSGE) model to a monthly specification that maintains521

the same economic restrictions and has real coefficients. We then show how522

to adapt the monthly model so as to take into consideration realistic features523

of the information structure such as non-synchronous infra-quarter data re-524

leases. Finally we augment the model with data which are potentially useful525

for providing early signals on the state of the economy but are not included526

in the DSGE.527

By construction, by the time quarterly data are published, the approach528

has no advantage with respect to the standard quarterly DSGE model. How-529

ever, at any time before that date, it allows exploiting the data flow for up-530

dating, given the estimated parameters, the estimates of the states. This531

delivers increasingly accurate signals about the current value of key variables532

as well as capturing the effect of particular shocks in real time.533

Our empirical application shows that timeliness matters for both the fore-534

cast and its structural interpretation. It also highlights that the shock decom-535

position is very uncertain in real time and that, by exploiting high frequency536

information, we can significantly decrease this uncertainty with the estimates537

of the shocks converging to the ex-post decomposition faster. Although much538

research has been devoted to real time analysis, the identification of struc-539

tural shocks in real time has been typically overlooked in the literature. In540

our analysis of the great recession we have shown that our framework would541

have allowed to understand faster than the quarterly model that the econ-542
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omy was being hit not only by a risk premium shock but also by a technology543

shock, therefore signaling at an early stage that both the financial sector and544

the real economy were affected.545

Finally, let us highlight that our proposed approach is simple and not546

invasive, as it can be applied to existing DSGEs with no need to re-estimate547

them frequently and without changing the model’s ex-post interpretation of548

the data.549
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Appendix A. The model

Here we summarize the key log-linear equations of the GSW model. We
refer to Gaĺı, Smets and Wouters (2012) for a more detailed description of
the model.

• Consumption Euler equation:

ĉt = c1Et [ĉt+1] + (1− c1)ĉt−1 − c2

(
R̂t − Et [π̂t+1]− ε̂bt

)
with c1 = (h/τ)/(1 + (h/τ)), c2 = (1 − h/τ)/(1 + (h/τ)) where h is
the external habit parameter. ε̂bt is the exogenous AR(1) risk premium
process.

• Investment Euler equation:

ît = i1ît−1 + (1− i1)̂ıt+1 + i2Q̂
k
t + ε̂qt

with i1 = 1/(1 + β), i2 = i1/(τ
2Ψ) where β is the discount factor and

Ψ is the elasticity of the capital adjustment cost function. ε̂qt is the
exogenous AR(1) process for the investment specific technology.

• Aggregate demand equals aggregate supply:

ŷt =
c∗
y∗
ĉt +

i∗
y∗
ît + ε̂gt +

rk∗k∗
y∗

ût (A.1)

= Mp

(
αk̂t + (1− α)L̂t + ε̂at

)
(A.2)

with Mp reflecting the fixed costs in production which corresponds
to the price markup in steady state. ε̂gt , ε̂

a
t are the AR(1) processes

representing exogenous demand components and the TFP process.

• Price-setting under the Calvo model with indexation:

π̂t − γpπ̂t−1 = π1 (Et [π̂t+1]− γpπ̂t)− π2µ
p
t + ε̂pt

with π1 = β, π2 = (1− θpβ)(1− θp)/ [θp(1 + (Mp − 1)εp)] and θp and
γp are, respectively, the probability and indexation of the Calvo model,
and εp is the curvature of the aggregator function. The price markup µpt
is equal to the inverse of the real marginal m̂ct = (1−α)ŵt+αr̂kt− Ât.
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• Wage-setting under the Calvo model with indexation:

πwt = γwπ
p
t−1 + βEt

[
πwt+1 − γwπ

p
t

]
− λwφut + λwµ

w
t

where the unemployment rate ut = lt − nt is defined so as to include
all the individuals who would like to be working (given current labour
market conditions, and while internalizing the benefits that this will
bring to their households) but are not currently employed.

• Capital accumulation equation:

ˆ̄kt = κ1
ˆ̄kt−1 + (1− κ1)̂it + κ2ε̂

q
t

with κ1 = 1− (i∗/k̄∗), κ2 = (i∗/k̄∗)(1 + β)Ψ. Capital services used in

production are defined as: k̂t = ût+ ˆ̄kt−1

• Optimal capital utilisation condition:

ût =
1− φ
φ

r̂kt

with φ being the elasticity of the capital utilisation cost function.

• Optimal capital/labour input condition:

k̂t = ŵt − r̂kt + L̂t

• Monetary policy rule:

R̂t = ρrR̂t−1 + (1− ρr)(rππ̂t + ryygapt) + r∆y∆yt + εrt

where ygapt = yt − yflext is the difference between actual output
and the output in the flexible price and wage economy in absence of
distorting price and wage markup shocks.

• In practice, as Del Negro, Hasegawa and Schorfheide (2014) show for
the SW, adding the financial frictions to this model simply amount
to replacing the equation for the value of the capital stock with the
following conditions:

Et

[
R̂k
t − R̂t

]
= bt + ζsp,b(Q̂

k
t + k̄t − nt) + σω,t
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R̂k
t − πt =

rk∗
rk∗ + 1− δ

rkt +
1− δ

rk∗ + 1− δ
Q̂k
t − Q̂k

t−1

nt = ζnrk(R̂
k
t−πt)−ζnr(R̂t−πt)+ζnqk(Q̂k

t−1+k̄t−1)+ζnnnt−1−
zetanσ
spσ

σω, t− 1,

which define respectively the spread, the return on capital and the
evolution of the entrepreneurial net worth. Unlike Del Negro, Hasegawa
and Schorfheide (2014) we estimate the parameters in this last equation
directly. The measure of spreads in the observables is related to the

model variables Et

[
R̂k
t − R̂t

]
as follows:

Spread = SP ∗ + 100 + Et

[
R̂k
t − R̂t

]
We calibrate the δ, c

g
and h to standard values of 0.025, 0.18 and 0.7

respectively, while we calibrate the following parameters to their mean
posterior values in GSW (2012): β = (0.31/100 + 1)−1, Ψ = 3.96,
ζp = 10, ρchi = 0.99, and cgy = 0.69.

The priors of the estimated parameters are reported below.

Prior Distribution Prior Distribution
Distr. mean st.dev Distr. mean st.dev

ν B 0.5 0.2 γp B 0.5 0.1
ρπ N 1.5 0.125 γw B 0.5 0.1
ρygap N 0.12 0.01 ψ B 0.5 0.15
ρ∆ygap N 0.12 0.01 ρr B 0.75 0.10
θw B 0.5 0.1 φ N 2 0.5
θp B 0.5 0.1 ζnσ N 2 0.5
τ N 0.40 0.1 σχ U 2.5 1.44

SP ∗ N 2 0.5 Π∗ G 0.62 0.1
l∗ N 0 0.1 ζspb B 0.2 0.1
ζrk N 0.2 0.1 ζnr N 0.2 0.1
ζnq N 0.2 0.1 ζnn B 0.8 0.1
ρb B 0.5 0.2 σb U 2.5 1.44
ρq B 0.5 0.2 σq U 2.5 1.44
ρg B 0.5 0.2 σg U 2.5 1.44
ρa B 0.5 0.2 σa U 2.5 1.44
ρms B 0.5 0.2 σr U 2.5 1.44
ρp B 0.5 0.2 σp U 2.5 1.44
ρw B 0.5 0.2 σw U 2.5 1.44
ρnw B 0.5 0.2 σnw U 2.5 1.44

Table A.3: Prior distribution of the parameters of the model
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Appendix B. Auxiliary data and Calendar

timing release publ. lag transformation FRED

1 1st day of the 1st month - - - -
2 1st bus. day of the 1st month Economic Policy Uncertainty Index m-1 1 USEPUINDXM
3 1st bus. day of the 1st month PMI m-1 1 NAPM
4 1st bus. day of the 1st month construction m-2 1 TTLCONS-
5 1st Friday of the 1st month Employment situation m-1 2 (earnings) AWHNONAG, CE16OV, UNRATE
6 Middle of the 1st month CPI and PPI m-1 2 CPIAUSL
7 15th to 17th of the 1st month Industrial Production m-1 2 INDPRO
8 3rd week of the 1st month Credit and M2 (H8 release) m-1 2 LOANS, M2
9 later part of the 1st month housing starts m-1 1 HOUST
10 3rd Thursday of the 1st month Business Outlook Survey: Phil. Fed m 1 -
11 Last week of 1st month GDP release q-1 COMPNFB, FPI, GDPC1, GDPDEF
12 Day after GDP release PCE, RDPI m-1 2 PCE,DSPIC96
13 Day after GDP release PCE price index m-1 2 PCEPI
14 Last day of the 1st month Fed Funds rate and credit spread m 3 FEDFUNDS, BAAY10
15 1st bus. day of the 2nd month Economic Policy Uncertainty Index m-1 1 USEPUINDXM
16 1st bus. day of the 2nd month PMI m-1 1 NAPM
17 1st bus. day of the 2nd month construction m-2 1 TTLCONS
18 1st Friday of the 2nd month Employment situation m-1 2 (earnings) AWHNONAG, CE16OV, UNRATE
19 Middle of the 2nd month CPI and PPI m-1 2 CPIAUSL
20 15th to 17th of the 2nd month Industrial Production m-1 2 INDPRO
21 3rd week of the 2nd month Credit and M2 (H8 release) m-1 2 LOANS, M2
22 later part of the 2nd month housing starts m-1 1 HOUST
23 3rd Thursday of the 2nd month Business Outlook Survey: Phil. Fed m 1 -
24 Last week of 2nd month PCE, RDPI m-1 2 DSPIC96, PCE
25 Last week of 2nd month PCE price index m-1 2 PCEPI
26 Last day of the 2nd month Fed Funds rate and credit spread m 3 FEDFUNDS, BAA10Y
27 1st bus. day of the 3rd month Economic Policy Uncertainty Index m-1 1 USEPUINDXM
28 1st bus. day of the 3rd month PMI m-1 1 NAPM
29 1st bus. day of the 3rd month construction m-2 1 TTLCONS
30 1st Friday of the 3rd month Employment situation m-1 2 (earnings) AWHNONAG, CE16OV, UNRATE
31 Middle of the 3rd month CPI and PPI m-1 2 CPIAUSL
32 15th to 17th of the 3rd month Industrial Production m-1 2 INDPRO
33 3rd week of the 3rd month Credit and M2 (H8 release) m-1 2 LOANS, M2
34 later part of the 3rd month housing starts m-1 1 HOUST
35 3rd Thursday of the 3rd month Business Outlook Survey: Phil. Fed m 1 -
36 Last week of 3rd month PCE, RDPI m-1 2 PCE, DSPI96C
37 Last week of 3rd month PCE prce index m-1 2 PCEPI
38 Last day of the3rd month Fed Funds rate and credit spread m 3 FEDFUNDS, BAAY10

Table B.4: Data releases are indicated in rows. Column 1 indicates the progressive number
associated to each ”vintage”. Column 2 indicates the official dates of the publication.
Column 3 indicates the releases. Column 4 indicates the publishing lag: e.g. IP is release
with 1-month delay (m-1). Column 4 indicate the transformation: 1 indicates monthly
differences, 2 indicates monthly growth rates, 3 stands for no transformation. All data are
available from the FRED database of the St. Louis Fed
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Appendix C. Additional Figures and Tables
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Figure C.7: RMSFE of Consumption growth now-casts: full sample
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Figure C.8: RMSFE of policy rate now-casts: full sample
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Figure C.9: RMSFE of unemployment, estimated in real time throughout the
quarter
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Figure C.10: RMSFE of annual GDP deflator inflation now-casts throughout
the quarter
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Figure C.11: RMSFE of GDP growth now-casts: 1995-2007
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Figure C.12: RMSFE of GDP growth now-casts: 2008-2014
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Figure C.13: RMSFE of GDP deflator inflation now-casts: 1995-2007
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Figure C.14: RMSFE of GDP deflator inflation now-casts: 2008-2014
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Table C.5: quarter-on-quarter GDP growth forecasts: pre-crisis sample -1995-2007

SPF Q Q+cond M M+panel

Q0 0.4769*** 0.5589 0.5598 0.4865* 0.4824*
Q1 0.5407** 0.6698 0.6683 0.6386 0.6526
Q2 0.5557 0.7117 0.7122 0.6878 0.7031
Q3 0.5493* 0.7091 0.7119 0.6930 0.7054
Q4 0.5613 0.6873 0.6915 0.6737 0.6877

Table C.6: annual GDP deflator inflation: pre-crisis sample - 1995-2007

SPF Q Q+cond M M+panel

Q0 0.1940* 0.1861 0.1865 8 0.1804 0.1844
Q1 0.3754 0.3805 0.3799 0.3680 0.3737
Q2 0.5549** 0.6026 0.7064** 0.5796* 0.5824*
Q3 0.7547** 0.8517 0.8519 0.8204 0.8173*
Q4 0.9949 0.9926 0.9932 0.8669* 0.9544

Table C.7: quarter-on-quarter GDP growth forecasts: 2008-2014 sample

SPF Q Q+cond M M+panel

Q0 0.4954*** 0.5777 0.5776 0.6431 0.5563
Q1 0.6632 0.6696 0.6719 0.6593 0.6549
Q2 0.7753** 0.7260 0.7237 0.7289 0.7240
Q3 0.8553* 0.7783 0.7744 0.7902 0.7902
Q4 0.8914 0.8548 0.8552 0.8757 0.8670

Table C.8: annual GDP deflator inflation forecasts: 2008-2014 sample

SPF Q Q+cond M M+panel

Q0 0.2020** 0.2460 0.2454 0.2461 0.2547
Q1 0.3131*** 0.4104 0.4073 0.4091 0.4233
Q2 0.4663** 0.5882 0.5533 0.5821 0.5866
Q3 06211** 0.7696 0.7610 0.7568 0.7605
Q4 1.0191** 0.8197 0.8071 0.8137 0.7853*

RMSFE of forecasts with horizons 0 to 4, produced in the first half of the
second month of the quarter (information cluster 19), approximately when
the SPF produce their own forecasts. We indicate with ***, ** and * the
forecasts that are statistically significantly different from the forecast pro-
duced by the model with the balanced panel (Q, third column in the tables)
with a 1%, 5% and 10% level, respectively, based on the Diebold-Mariano
(1995) test
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