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Abstract

This paper estimates the impact on the US economy of four types of uncertainty

about (i) government spending, (ii) tax changes, (iii) public debt and (iv) monetary

policy. Uncertainty on the government debt has a large and persistent effect on

output, consumption, investment, consumer confidence and business confidence.

Uncertainty about tax changes also has detrimental consequences for real activity

but the effect of spending and monetary policy uncertainty appears to be small.

About 25% of output fluctuations are accounted for by policy uncertainty, with

government debt making the largest contribution at longer horizons.
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1 Introduction

In response to the great recession of 2007-2008, governments and central banks across the

industrialized world have resorted to a wide set of short-run stabilization policies, rang-

ing from boosts in public spending, labour tax refunds, consumption tax cuts, near zero

short-term interest rates and nontraditional balance-sheet monetary tools. The breadth

and depth of the economic conditions, however, have called into questions the effec-

tiveness of conventional and unconventional short-run stabilization policies and, several

years since the outbreak of the financial crisis, the uncertainty around the impact of ex-

isting fiscal and monetary interventions does not seem to have dissipated. Furthermore,

the surge of public debt associated with the recent short-run stabilization policies has

triggered a perhaps even more pervasive uncertainty about the long-run sustainability

of existing fiscal positions.

The significance of long-run fiscal uncertainty is exemplified in Figure 1, which re-

ports the debt-to-gdp ratio projections prepared by the Congressional Budget Offi ce

(CBO) back in 2009. The extended baseline scenario reflects the assumption that cur-

rent laws generally remain unchanged, which is lawmakers will allow changes that are

scheduled under current law to occur, forgoing adjustments routinely made in the past

that have boosted deficits. The extended alternative fiscal scenario is constructed under

the hypothesis that certain macroeconomic policies in place since a number of years will

be continued going forward and that some provisions of law which might be diffi cult to

sustain for a long period will be modified, thus maintaining what some analysts might

consider “current policies”, as opposed to current laws.

Three points are worth emphasizing about the CBO projections. First, the two
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scenarios produce debt levels which are apart from one other by more than 150% of

GDP by 2037. Second, the discrepancy increases with the forecast horizon. Third, the

two scenarios are computed under maintained assumptions about the effectiveness of

government and tax policies on real activity, and therefore they abstract implicitly from

uncertainty about the effectiveness of short-run policies.

Despite the recognition in policy and academic circles that short-run uncertainty

(about the current stance of fiscal and monetary policy) and long-run uncertainty (about

the future stance of economic policies) may both have a highly detrimental impact on

the economic outlook, the empirical literature on policy uncertainty has, so far, mostly

focused on current government spending and tax policies.

In this paper, we complement existing contributions by estimating the impact on real

activity of four types of policy uncertainty associated with government spending, tax

changes, public debt and monetary policy. While the focus on short-run stabilization

policies is shared with earlier studies, the analysis of long-run fiscal uncertainty is —to

the best of our knowledge—new.

Our main results can be summarized as follows. First, uncertainty about government

debt has a large and statistically important impact on real activity, with effects of about

0.5%, 0.3% and 1% after two years on GDP, non-durable consumption and investment

respectively. These estimates are sizable: on the basis of our empirical model, we calcu-

late that to generate effects of similar magnitude a monetary policy shock would need to

move the short-term nominal interest rate by about 60 basis points. Second, the impact

of net taxes volatility appears to be more important than uncertainty about government

spending and monetary policy, with the impact of the latter two shocks close to zero.

Third, debt and net tax shock uncertainty appears to have a more detrimental impact
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on consumer confidence than on business confidence. Fourth, the contribution of policy

uncertainty to variations in output, consumption and investment is around 20% to 30%.

Fifth, shocks to public debt volatility make the largest contributions to aggregate fluctu-

ations in GDP, accounting for about one third of the total share explained by economic

policy uncertainty shocks at horizons beyond the first year.

In our empirical model, the volatility of identified shocks is allowed to have a direct

impact on the variables of a Structural Vector Autoregression (SVAR).1 This is an

advancement relative to existing SVAR studies with stochastic volatility which do not

feature a direct link from second moments to first moments (see for instance Primiceri,

2005, Canova and Gambetti, 2010, and Gambetti, 2011). Furthermore, by modelling

the dynamic relationship between the volatility of identified shocks and endogenous

variables, our framework can shed light on the causality behind the dynamic correlations

between the uncertainty measures and other macroeconomic variables reported by Baker,

Bloom and Davis (2016), Stock and Watson (2012) and Caggiano, Castelnuovo and

Groshenny (2013), among others.

Our paper contributes to a growing literature on quantifying the effects of eco-

nomic policy uncertainty on the real economy. On the macro side, Fernández-Villaverde,

Guerrón-Quintana, Kuester and Rubio-Ramírez (2015) and Born and Pfeifer (2014) use

estimated volatility of government spending and tax policy shocks in calibrated general

equilibrium models of the U.S. economy to study the real effects of short-run fiscal in-

terventions. Exploiting cross-country variation in natural disasters, terroristic attacks

and unexpected political events, Baker, Bloom and Davis (2016) find that uncertainty

has detrimental effects on both the level and volatility of GDP growth. Brogaard and

1Throughout the paper, we will refer to ‘volatility of structurally identified shocks’as ‘uncertainty’.
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Detzel (2012) quantify the impact of a search-based policy uncertainty measure on stock

market returns. Using firm-level data, Julio and Yook (2010) report that the timing of

national elections has a dampening effect on corporate investment while Handley and

Limao (2012) assess the impact of uncertainty about trade policies on firms’investment

and entry decisions. It is worth emphasizing that, unlike most earlier contributions, our

main focus is on uncertainty about fiscal sustainability and as such it seems closer in

spirit to the quantitative models put forward by Bianchi and Melosi (2015a and 2015b)

on the extent to which uncertainty about how rising public debt will be stabilized can

account for the dynamics of U.S. inflation during the Great recession.

The paper is organized in five parts. In section 2, we lay out the empirical method.

In section 3, we present the estimation algorithm and the restrictions to isolate fiscal

and monetary policy innovations. The main results are reported in section 4. In the

last part, we assess the robustness of our findings to alternative identification schemes

for the fiscal policy shocks as well as to including the average cost of public debt.

2 Empirical Model

In this section, we use a simple generalization of structural VARs with stochastic volatil-

ity, which makes it suited to study the impact of economic policy uncertainty on macro-

economic variables. In particular, we refer to the following empirical model:

Zt = c+

P∑
j=1

βjZt−j +

J∑
j=0

γjh̃t−j + Ω
1/2
t et, et˜N(0, IN) (1)

where

Ωt = A−1HtA
−1′ (2)
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In equation (1), the vector Zt denotes the i = 1, .., N macroeconomic variables, IN is

a N × N identity matrix, while h̃t = [h1t, h2t...hNt] refers to the log volatility of the

structural shocks in the VAR. The structure of the matrix Ht in equation (2) is given by

diag(exp(h1t), exp(h2t)... exp(hNt)). TheAmatrix has ones on the main diagonal and the

structure of the matrix is chosen by the econometrician to model the contemporaneous

relationship amongst the reduced form shocks. We discuss our choice for the structure

of the A matrix in Section 3.

The transition equation for the stochastic volatility is given by:

h̃t = θh̃t−1 +Q1/2ηt , ηt˜N(0, IN), E
(
et, ηi,t

)
= 0, i = 1, 2..N (3)

with the covariance matrix Q being diagonal.2 There are two noteworthy features about

the complete system (1)-(3). First, equation (1) allows the volatility of the structural

shocks h̃t to have a direct impact on the endogenous variables Zt.3 Second, the structure

of the matrix A in equation (2) determines the interpretation of the structural shocks and

hence their volatility Ht. As discussed below, these two features imply that, by imposing

an appropriate set of restrictions on the A matrix, our framework is able not only to

identify monetary and fiscal shocks but also to investigate the impact of innovations to

the volatility of these structural shocks on the variables in Zt.

Note that equation (3) makes the assumption that the shocks ηt to the volatility

equation and the shocks et to the observation equation are uncorrelated. With this

2In the working paper version (Mumtaz and Surico, 2013), we show that the results below are
robust to allowing for possible co-movements among volatility shocks. Under this scenario, however,
the interpretation of the impulse response functions and variance decomposition becomes slightly more
convoluted (and possibly less intuititve) relative to the case of a diagonal Q presented here.

3In our specification it is the log volatility (rather than its level) to enter the VAR equations. This is
primarily because the level specification proved to be far more computationally unstable. In particular,
the level specification is sensitive to the scaling of the variables with the possibility of overflow whenever
the scale of the variables is relatively large.
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assumption in place, given an estimate of Q1/2, one can interpret an innovation to the

ith element of ηt as a shock to the volatility of the i
th structural shock and then calculate

the response of the volatility ht and the endogenous variables Zt. Under the more

general scenario of a full covariance matrix among the volatility and the level innovations,

the identification of the volatility shocks is substantially more convoluted and further

identifying restrictions are required to separate the innovation to the volatility from the

innovation to the level. In particular, there seems to be no simple way to assign hi,t to

a particular structural shock. In contrast, the assumptions in equation (3) allows us to

use standard identification schemes.

This framework builds upon and extends the empirical models in Mumtaz and Zanetti

(2013) and Mumtaz and Theodoridis (2015), with the main departures being the iden-

tification of the policy uncertainty shocks, especially those related to fiscal policy, as

well as the novel focus on government debt, which is discussed in the section on identi-

fication.4 Finally, the model presented above is related to a number of recent empirical

contributions. The structure of stochastic volatility, for instance, closely resembles the

formulations used in time-varying VAR models (see for instance Cogley and Sargent

(2005), Primiceri, 2005, Canova and Gambetti (2009 and 2010) and Canova, Gambetti

and Pappa (2009)). Our model differs from these studies in that it allows a direct impact

of the volatilities on the level of the endogenous variables.

The framework proposed in this paper can be thought of as a multivariate extension

of the stochastic volatility in mean specification put forward by Koopman and Uspensky

(2002) and applied by Berument, Yalcin and Yildirim (2009) and Lemoine and Mou-

gin (2010). Furthermore, our model shares similarities with the stochastic volatility

4Mumtaz and Theodoridis (2014) and Alessandri and Mumtaz (2014) use VARs with common sto-
chastic volatility in mean as in Carriero et.al (2016) but do not identify any structural shocks.
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specifications with leverage studied by Asai and McAleer (2009).

3 Estimation and identification

In this section, we present the Gibbs sampling algorithm to estimate the empirical model

presented in the previous section and the identification strategy to isolate the dynamic

effects of the policy volatility shocks. The vector of endogenous variables, Zt, contains:

the log of real per-capita government spending, the log of real per-capita investment,

the log of real per-capita consumption, the log of real per-capita GDP, annual consumer

price inflation, the log of per-capita net taxes, federal government debt held by the

public as a percentage of nominal GDP, a measure of the monetary policy instrument,

business confidence and the University of Michigan consumer confidence index.5

The sample runs from 1970 Q1 to 2015 Q4. In order to proxy the stance of monetary

policy we use the three-month Treasury Bill rate (3m TB rate) from 1970 Q1 to 2008

Q4. However over the 2009 Q1 to 2015 Q4 period we replace the 3m TB rate with the

shadow interest rate estimated by Wu and Xia (2015) using a non-linear term structure

model in order to proxy the monetary policy stance under the zero lower bound. The

appendix provides details on the sources of the data and their construction.

As the model contains a large number of endogenous variables, we keep the specifica-

tion parsimonious and restrict the lag lengths P and J to 2 and 1 respectively.6 Finally,

we use linear de-trending to account for low-frequency movements in the macroeconomic

variables.
5Note that in our estimation we consider the face value of federal debt rather than the market value.

This is mainly because data on the market value of debt consistent with NIPA based measures of taxes
and spending include in our model are not readily available from offi cial sources.

6The results below are robust to setting either P or J to 4, though the estimates are less precise
because of the considerably larger number of parameters.
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3.1 The Gibbs sampling algorithm

The non-linear state space model (1)-(3) is estimated using a Gibbs sampling algorithm.

The appendix presents details of the priors and the conditional posterior distributions

while a summary of the algorithm is laid out below, proceeding in the following steps:

1. Conditional on a draw for the stochastic volatility h̃t, and the matrix A, equation

(1) represents a VAR model with heteroskedastic disturbances. We re-write the

VAR as a state space model and draw from the conditional distribution of Γ = [β, γ]

using the algorithm in Carter and Kohn (1994).

2. Conditional on a draw for h̃t and Γ, the elements of the matrix A can be drawn

using a series of linear regression models amongst the elements of the residual

matrix vit = Ω
1/2
t eit, as shown in Cogley and Sargent (2005). Conditional on h̃t,

the autoregressive parameters θi and variances Qi can be drawn using standard

results for linear regressions.

3. Conditional on Γ, A, θi and Qi, the stochastic volatilities are simulated using a

date by date independence Metropolis step as described in Jacquier, Polson and

Rossi (1994) - see also Carlin, Polson and Stoffer (1992).

We use 500,000 replications in total discarding the first 50,000 as burn in. We

base our inference on every 45th draw of the remaining replications giving us a set

of 10,000 draws. The appendix presents the Raftery and Lewis (1992) diagnostic and

ineffi ciency factors which suggest that the number of iterations used are suffi cient to

achieve convergence.
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3.2 Identification of the policy shocks

The statistical identification of the stochastic volatilities requires a normalization of

the innovation covariance matrix Ωt. This can be conveniently obtained by a Cholesky

factorization of the covariance matrix Ωt = A′0,tA0,t. While such a normalization has

no specific economic content, an appropriate ordering of the endogenous variables in

the vector Zt can allow one to attach an economic interpretation to the orthogonalized

shocks (see Sims, 1980, Primiceri, 2005, and Canova and Gambetti, 2009). The variables

are ordered as follows: (1) government spending, (2) investment, (3) consumption, (4)

GDP, (5) inflation, (6) net taxes, (7) government debt, (8) monetary policy instrument,

(9) business confidence and (10) the University of Michigan consumer confidence index.

The specific ordering proposed above assumes that government spending (consumer

confidence) is the most (least) exogenous variable in the system. The first assumption is

justified by the lags of fiscal policy and follows the identification strategy for spending

shocks in Blanchard and Perotti (2002) and Perotti (2007, p. 192), who argues that "by

and large, [discretionary] government spending on goods and services does not respond

to macro economic news within a quarter." Ordering consumer confidence last appeals

to the same rationale used in the identification strategy by Bernanke, Boivin and Eliasz

(2005), who note that fast moving variables —like financial and confidence variables—

are the most likely to react within the quarter to macroeconomic news. The ordering

of the remaining variables implies that the short-term interest rate is allowed to react

contemporaneously to the slower-moving variables while the latter can respond only

with a quarter lag to unanticipated movements in the former. This is a rather standard

identification for monetary shocks in the VAR literature.

As for net taxes, we follow Caldara and Kamps (2008) in assuming that these are
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affected contemporaneously by GDP and prices but react only with a lag to the short-

term rate and the consumer confidence index. The first assumption is based on the

idea that shocks to output and inflation affect the tax base within the quarter and this

leads to contemporaneous changes in tax revenues. However, as taxes are defined net

of interest payments, it is likely that they are not affected immediately by changes in

interest rates and financial variables. The main difference relative to the identification

of net tax shocks in Perotti (2007) is that we estimate (rather than impose fixed values

for) the contemporaneous elasticities of taxes to output and inflation.7 Perotti (2007)

also sets to zero the contemporaneous elasticities of taxes and government spending to

the interest rate as well as the contemporaneous elasticity of government spending to

output. These identifying restrictions are consistent with ordering government spending

before output and the interest rate as well as ordering taxes before the interest rate

but after output and inflation, as we do here. In the sensitivity analysis below, we

show that using the scheme in Blanchard Perotti (2002) or the exogenous tax liability

changes proposed by Romer and Romer (2010) as a measure of tax shocks produces

similar results.

Interpreting public debt shocks. Previous VAR studies have typically abstracted

from public debt in their empirical analysis with the notable exception of Cheng and

Leeper (2007) and Favero and Giavazzi (2012), who however study only level shocks

rather than modelling and focussing on the volatility shock considered in the empirical

model proposed in this paper. One of the goals of our analysis is therefore to estab-

lish whether such an exclusion is warranted for the purpose of measuring the effects of

7Caldara and Kamps (2012) show that imposing fixed values for these elasticities may distort the
inference on the dynamic effects of fiscal shocks.
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economic policy uncertainty. Because of the scarcity of empirical precedents, we take a

relatively reduced-form approach rather than trying to identify the specific mechanism,

among several theoretical alternatives, that may give rise to a public debt shock. Still,

to develop intuition, in this part of the paper we discuss briefly some more structural

interpretations for the deviations of the debt-to-GDP ratio from its expected path.

Following the empirical literature on fiscal SVARs, our model includes net taxes,

namely government receipts net of transfer and interest payments.8 But Figure 2 reveals

that movements in transfer payments and movements in public debt are remarkably

synchronized, consistent with a possible interpretation of our public debt shock as a

temporary deviation from the expected path of future transfer payments. Indeed, the

CBO projections in Figure 1 as well as the public and policy debates feature prominently

this as a main source of uncertainty surrounding the expected level of future public debt.

Second, the theoretical framework developed by Leeper, Plante and Traum (2010),

Bi (2012) and Bi and Leeper (2013) reveal that the ‘residuals’of the equation determin-

ing the debt-to-gdp ratio (i.e. the government flow budget constraint) have a natural

interpretation as a shock to fiscal sustainability. The latter two papers explicitly model

this equation as a regime-switching process for transfer payments. While it would be

computationally infeasible to build such a non-linear dynamics in our non-linear model,

we note that —conceptually consistent with these theoretical studies—our debt shocks

might also be interpreted as temporary deviations from a fiscal sustainable path.

Third, the intertemporal budget constraint relates current government purchases to

the present value of future tax revenues through the accumulation of public debt. So,

while shocks to net taxes and government spending are more likely to capture deviations

8See for instance Blanchard and Perotti (2002), Perotti (2007), Caldara and Kamps (2008), Mount-
ford an Uhlig (2009), among many others.
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from the current stance of fiscal policies, shocks to public debt might be interpreted as

possible deviations from the stance of fiscal policy that will be adopted in the future.

Finally, our debt shocks may also reflect time-variation in debt management, including

changes in the maturity structure and interest payments, and any approximation error

associated with the linearization of the intertemporal government budget constraint.

The considerations above further motivate the choice to include government debt in

our empirical model, over and above government spending and net taxes. Still, addi-

tional restrictions are needed to identify a public debt shock. In analogy to any other

fiscal shock, the complication comes from distinguishing among three main drivers: auto-

matic stabilizers, discretionary responses to business cycle conditions and discretionary

responses unrelated to the business cycle. Our identification strategy seek to isolate this

third component. Following the literature, we normalize the level of nominal government

debt by nominal GDP. To purge the residuals of the debt equation from the effects of

the endogenous response of fiscal policy to the business cycle, we order the debt-to-gdp

ratio after real GDP. Similarly, to account for the impact of the price level, inflation is

ordered before the debt-to-gdp ratio.

3.3 Computing impulse responses to volatility shocks

To account for the non-linear interaction between stochastic volatility and the level

shocks in equation (1), we use Monte Carlo integration to compute the Generalized

Impulse Response Functions (GIRF) in the spirit of Koop, Pesaran and Potter (1996).

The GIRF is defined as

GIRF = E
(
Zt+k | h̃t,Ψ, Zt, ηt,j = µ

)
− E

(
Zt+k | h̃t,Ψ, Zt

)
(4)
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where Ψ denotes all parameters of the VAR model, k is the horizon under consideration

and η denotes the shock to transition equation (3). Equation (4) states that the impulse

response functions are calculated as the difference between two conditional expecta-

tions. The first term in equation (4) denotes the forecast of the endogenous variables

conditioned on an innovation µ to the volatility shock of interest at horizon 0. The

second term is the baseline forecast, namely a scenario conditioned on the shocks being

integrated out. Koop, Pesaran and Potter (1996) describe how to approximate these

conditional expectations via a stochastic simulation of the VAR model. Note that we

calculate the impulse responses for all possible initial conditions (Zt, h̃t) in the sample

and report below the average impulse responses for each endogenous variables. Finally,

equation (4) can also be used to compute the forecast error variance conditional on

a particular shock. Given that, the resulting contribution of each shock to the total

forecast error variance can easily be derived.

4 Empirical evidence

The model (1)-(3) is estimated on U.S. data over the period 1980q1-2015q4 using the

identification scheme described in the previous section. Data between 1970q1 and 1979q4

are used to initialize the priors. We compare the fit of the benchmark VAR model with

a linear homoskedastic VAR by using the deviance information criterion (DIC) proposed

in Spiegelhalter et.al.( 2002). As described in the on-line technical appendix, the DIC

rewards fit while penalising model complexity. A model with a lower DIC is preferred.

The estimated DIC for our benchmark model is 1795.6 while the estimate for the linear

VAR is 2002.9, suggesting a better fit for the model used in the analysis below.

We begin by reporting the estimated time series for the volatility of the fiscal and
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monetary shocks, which we interpret as measuring economic policy uncertainty. Then,

we move to the impulse response function analysis and finally to the forecast error

variance decomposition. In the next section, we will investigate the sensitivity of our

findings to alternative identification schemes.

4.1 A novel measure of economic policy uncertainty

The measures of policy uncertainty produced by our empirical model are presented in

Figure 3, together with the policy uncertainty index (dashed blue line) proposed by

Baker, Bloom and Davis (2016).9 The approach proposed in this paper allows us to

distinguish among uncertainty about the current stance of fiscal policy, as exemplified

by the standard deviation of the shocks to (i) government spending and (ii) net taxes;

uncertainty about the future stance of fiscal policy, as exemplified by the standard devi-

ation of the shocks to (iii) the debt-to-GDP ratio, and uncertainty about (iv) monetary

policy.

Our measures of policy uncertainty share a significant number of turning points with

the index compiled by Baker, Bloom and Davis (2016). Furthermore, the estimates in

Figure 3 offer an interpretation of specific episodes of the recent U.S. economic policy

history. For instance, the large swing in the measure of monetary policy uncertainty

at the beginning of our sample coincides with the Volcker experiment of non-borrowed

reserve targeting. The recession of 1991 and the ‘Economic Growth and Tax Relief

Reconciliation Act’ of 2001 are associated with an increase in the volatility of both

taxes and public debt shocks.

The Great Recession is characterized by the largest uncertainty on the U.S. public

9The authors combine into a single index of economic policy uncertainty the frequency of news media
references, the number of federal tax code provisions set to expire in future years and the extent of
forecaster disagreement over future inflation and federal government purchases.
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debt, which over the period 2007-09 appears to become the most prominent source of

economic policy uncertainty. This is interesting because the policy interventions during

the great recession were, at least partially, the endogenous response to macroeconomic

conditions. Still, Figure 3 suggests that the long term finance, and possibly the scale,

of these interventions (as captured by the unanticipated component of movements in

the public debt) rather than the interventions per sè (as captured by the unanticipated

component of movements in government spending) appear to be the most significant

source of economic policy uncertainty.

From 2010-2014, policy uncertainty is largely reflected in the volatility of the net

taxes shock which remains persistently high over this period. The end of the sample is

characterised by a sharp rise in the uncertainty associated with government spending,

monetary policy and public debt shocks with the latter showing the largest increase.

Overall, we regard the good match between swings in our uncertainty measures and

the narrative records of fiscal and monetary interventions as suffi ciently reassuring to

proceed to the impulse response function analysis.10

4.2 Impulse response functions

In this section, we report the impact of shocks to the four policy uncertainty measures.

The response to innovations in the level of fiscal variables and the short-term interest

rate is presented in the technical appendix. The estimated responses are reasonable

from an economic point of view and fairly close to those obtained from a linear BVAR.

A positive spending shock raises GDP and consumption. In contrast, an innovation to

10More specifically, the correlation between the Baker, Bloom and Davis (2016) policy uncertainty
index and our measures of tax, debt and monetary policy uncertainty is 0.6, 0.4 and 0.3 respectively.
Our government spending uncertainty, however, has a negligible correlation with their policy uncertainty
index.
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taxes and debt results in a decline in real activity, with the estimates being larger in

the latter case. The shock to the short-term interest rate leads to a decline in GDP,

consumption and investment at the one year horizon with inflation displaying a modest

price puzzle only in the short-run.

The responses to policy uncertainty shocks are the main focus of our analysis and

are presented in Figure 4. We report the dynamic effects of the four policy uncertainty

measures on real activity, namely output, consumption and investment, and confidence

indicators, both for households and firms, following a one standard deviation shock.

The red lines represent median estimates while the shaded areas are 68% and 90%

highest posterior density intervals. Each column refers to a different economic policy

uncertainty shock, from government spending and taxes on the left to public debt and

monetary policy on the right.

Uncertainty about the debt to GDP ratio in the third column has the largest effect on

output, with a peak around 0.5%.11 The response of GDP is statistically different from

zero and long-lasting, inheriting the persistence of the volatility process. The response of

consumption is similar, both in shape and magnitude, to the response of output whereas

the decline in investment appears sizably larger. As shown in the technical appendix,

the level of debt also displays a persistent increase in response to this shock possibly

contributing to the adverse impact on real activity. Interestingly, consumer confidence

is more sensitive than business confidence to debt uncertainty.

The effects of volatility shocks to net taxes are similar to the impact of debt volatility.

Note that debt volatility shocks have a marginally larger impact on GDP than tax

11This peak effect is about three times smaller than the peak effect estimated by Baker, Bloom and
Davis (2016). On the other hand, the size of our shock is about two times smaller than the size that
would have been implied by the metrics proposed by Baker, Bloom and Davis (2016), who consider a
shock as large as the difference in their policy uncertainty index between 2006 and 2011.
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volatility innovations and also appear to affect business confidence by a larger amount.

In contrast to net tax and debt volatility shocks, innovations to spending and monetary

policy volatility do not have an impact that is statistically different from zero.

In summary, the dynamic effects of economic policy uncertainty shocks, especially

public debt and net taxes, on economic activity, consumer confidence and business con-

fidence appears sizable and persistent. To give a metric for the magnitude presented in

this section, we calculate that —according to the estimates of our empirical model— it

would take a movement in the short-term rate of about 60 basis points for a monetary

policy shock to generate an effect on output similar to the effect generated by a one

standard deviation shock to the volatility of the debt to GDP ratio.

4.3 Variance decomposition

The impulse response function analysis of the previous section suggests that policy un-

certainty shocks may have large effects on the real economy as well as on consumer

and business confidence. In Figure 5 of this section, we evaluate their contributions to

aggregate fluctuations by presenting median estimates for the forecast error variance de-

composition of the endogenous variables of the VAR. It is worth noting that the presence

of stochastic volatility in the VAR model makes the variance of the structural shocks

time-varying. This implies that the contribution to the forecast error variance are also

time-varying. In the results below, we report the average of the forecast error variance

decomposition across the entire sample, but we have verified that similar findings are

obtained over different sub-periods.

Our estimates suggest that policy uncertainty shocks typically account for about 25%

of fluctuations in real activity and confidence measures, with slightly higher shares for
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consumption. The overall contribution is typically smaller on impact, tends to increase

with the forecast horizon within the first year and then stabilize afterwards. While net

taxes and monetary policy volatility make an important contribution to fluctuations

in GDP, investment and business confidence, the lion’s share of fluctuations appears

accounted by uncertainty on the debt-to-GDP ratio, especially over the medium term.

5 Sensitivity analysis

In this section, we assess the robustness of our conclusions to four variants of the restric-

tions imposed onto the baseline specification of Section 4 to recover the fiscal shocks.

The first sensitivity analysis is based on the identification of tax shocks proposed by

Blanchard and Perotti (2002). In line with their baseline VAR, we only consider a spec-

ification with government spending, GDP and net taxes to which we add public debt.

The reason for this choice is that in order to apply Blanchard and Perotti’s scheme,

we need to transform the model in a way that standard Bayesian methods for linear

regressions are applicable. In the context of our framework, this is computationally fea-

sible only using a reduced system. In order to implement this scheme, we use the value

of the output elasticity of government revenue (i.e. -2.08) estimated in Blanchard and

Perotti (2002). We retain the assumption that the debt shock has a lagged impact on

the remaining variables in the system. The second robustness check uses the measure

of tax shocks proposed by Romer and Romer (2010) as an endogenous variable in the

VAR model, replacing net taxes. In the third exercise, we focus on the identification of

public debt shocks and add to the baseline specification a measure of the average cost of

servicing the debt, which we order before the debt to GDP ratio. Furthermore, we order

the measures of public debt and its average cost after the short-term interest rate but
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we have verified that the results below are not overturned if we order it before the short

rate. Finally, in order to account for the possible impact of anticipated fiscal shocks, we

add the Ramey (2011) fiscal news shock to each equation of the benchmark VAR as an

exogenous variable.

The results of these sensitivity analyses are presented in Figure 6, which reports

the median estimates for the dynamic effects of the shocks to our measures of policy

uncertainty on GDP. Each chart presents the output response to a volatility shock to

public debt (black line with dots), government spending (light blue solid line), taxes

(red line with stars) and monetary policy (green crosses).

In all models, the shock to public debt uncertainty is associated with the largest

effects on real activity, with peak values ranging from about −0.1% in the specification

based on Romer and Romer’s measure of exogenous tax changes to around −0.9% using

Blanchard and Perotti’s identification scheme. Adding the average cost of public debt

to the endogenous variables of the VAR brings the peak effect into the neighborhood

of −0.5%. It should be noted, however, that for virtually all measures of real activity

and specifications only the impulse responses to a government debt uncertainty shock

are systematically different from zero at most horizons, with the exception of the Romer

and Romer identification under which the negative effects of public debt uncertainty on

output are still the largest among the policy uncertainty shocks but become insignifi-

cant.12

In summary, the results of these alternative identifying restrictions corroborate the

findings of the previous section that (i) an increase in policy uncertainty appears to

be associated with a significant output contraction and (ii) among the policy shocks,

12In the on-line technical appendix we show that the benchmark results are preserved if a stock
market index is added to the benchmark VAR model.
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uncertainty about public debt tends to have the most detrimental effect.13

6 Conclusions

Uncertainty about government debt appears to have large and persistent negative ef-

fects on output, consumption and investment as well as on confidence indicators for

households and firms. Uncertainty about the current stance of taxes also appears to

have a detrimental impact. Policy uncertainty shocks appear to explain about 25%

of fluctuations in real activity, with public debt uncertainty shocks making the largest

contribution.

Our results are based on an empirical model in which the volatility of identified

shocks is allowed, but not required, to have direct and dynamic effects on the endoge-

nous variables of an otherwise standard structural VAR with stochastic volatility. The

empirical framework used in this paper may prove useful to study in future research

also the dynamic effects on the real economy of other sources of macroeconomic uncer-

tainty stemming, for instance, from technological progress, labour market policies and

exchange rate dynamics.

13The variance decomposition analysis confirms that public debt uncertainty accounts for the largest
share of fluctuations explained by economic policy uncertainty shocks at horizons beyond two years.
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Figure 1: Source: CBO https://www.cbo.gov/
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Figure 2: Government spending, net taxes, transfers and government debt as a share of GDP. Net taxes are defined as current
government receipts minus current transfer payments minus interest rate payments. Sample: 1980q1-2015q4.
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Figure 3: estimates of the policy uncertainty shocks based on the benchmark model. Shaded areas represent 68% credible sets.
BBD index stands for the measure of economic policy uncertainty constructed by Baker, Bloom and Davis (2016).
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Figure 4: dynamic effects of 1 standard-deviation policy uncertainty shocks based on the benchmark model. The dark shaded
areas represent the 68% highest posterior density interval, while the lighter shaded area is the 90% highest posterior density
interval.
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Figure 5: median estimates for the forecast error variance decomposition based on the benchmark model.
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Figure 6: median estimates of the dynamic effects of policy uncertainty shocks on GDP under five alternative identifications of
fiscal shocks based on four structural VARs estimated for the U.S. economy over the sample 1980q1-2015q4.
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Appendix A: the Gibbs sampling algorithm

Prior Distributions and starting values

Consider the model to be estimated

Zt = c+
P∑
j=1

βjZt−j +

J∑
j=0

γjh̃t−j + Ω
1/2
t et, et˜N(0, 1) (5)

Ωt = A−1HtA
−1′ , Ht = diag

(
exp h̃t

)
(6)

h̃t = θh̃t−1 +Q1/2ηt , ηt˜N(0, 1), E
(
et, ηi,t

)
= 0, i = 1, 2..N (7)

VAR coeffi cients

Let the vectorised coeffi cients of equation 5 be denoted by Γ = vec
(
βj, γj, c

)
. The initial

conditions for the VAR coeffi cients Γ0 (to be used in the Kalman filter as described

below) are obtained via an OLS estimate of equation (5) using an initial estimate of

the stochastic volatility. The covariance around these initial conditions P0 is set to a

diagonal matrix with diagonal elements equal to 10.

The initial estimate of stochastic volatility is obtained via a simpler version of the

benchmark model where the stochastic volatility does not enter the mean equations. We

use a training sample of 40 observations to initialize the estimation of this simpler model.

The Gibbs algorithm for this model is a simplified version of the algorithm described

in Cogley and Sargent (2005), employing uninformative priors. The estimated volatility

from this model is added as exogenous regressors to a VAR using the data described in

the text in order to provide a rough guess for initial conditions for the VAR coeffi cients.

Elements of Ht

The prior for h̃t at t = 0 is defined as h̃0 ∼ N(lnµ0, IN) where µ0 are the first elements

of the initial estimate of the stochastic volatility described above.

Elements of A

The prior for the off-diagonal elementsA is A0 ∼ N (â, V (â)) where â are the elements of

this matrix from the initial estimation described above. V (â) is assumed to be diagonal

with the elements set equal to the absolute value of the corresponding element of â.
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Parameters of the transition equation

We postulate a Normal, inverse-Wishart prior distribution for the coeffi cients and the

covariance matrix of the transition equation (7). Under the prior mean, each stochastic

volatility follows an AR(1) process with an AR(1) coeffi cient equal to the estimated

value over the training sample. The prior is implemented via dummy observations (see

Banbura et al (2010)) and the prior tightness is set to 0.1.

Simulating the Posterior Distributions

The joint posterior distribution H (Γ, A,Ht, θ, Q) is approximated via a Metropolis

within Gibbs algorithm that samples from the following conditional posterior distri-

butions:

VAR coeffi cients : H (Γ|A,Ht, θ, Q)

The distribution of the VAR coeffi cients Γ conditional on all other parameters Ξ and

the stochastic volatility h̃t is linear and Gaussian: Γ|Zt, h̃t,Ξ ∼ N
(
ΓT |T , PT |T

)
where

ΓT |T = E
(

ΓT |Zt, h̃t,Ξ
)
, PT |T = Cov

(
ΓT |Zt, h̃t,Ξ

)
. Following Carter and Kohn (1994),

we use the Kalman filter to estimate ΓT |T and PT |T where we account for the fact that

the covariance matrix of the VAR residuals changes through time. The final iteration of

the Kalman filter at time T delivers ΓT |T and PT |T . The Kalman filter is initialized using

the initial conditions (Γ0, P0) described above. This application of Carter and Kohn’s

algorithm to our heteroskedastic VAR model is equivalent to a GLS transformation of

the model.

Element of A : H (A|Γ, Ht, θ, Q)

Given a draw for Γ and h̃t, the VAR model can be written as A (vt) = et where

vt = Zt − c +
∑P

j=1 βjZt−j +
∑J

j=0 γjh̃t−j and V AR (et) = Ht. For a triangular A

matrix, this is a system of linear equations with known form of heteroskedasticity. The

conditional distributions for a linear regression apply to this system after a simple GLS

transformation to make the errors homoskedastic (see Cogley and Sargent (2005)). The

ith equation of this system is given as vit = −αv−it + eit where the subscript i denotes

the ith column while −i denotes columns 1 to i − 1. Note that the variance of eit

is time-varying and given by exp
(
h̃it

)
. A GLS transformation involves dividing both
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sides of the equation by

√
exp

(
h̃it

)
to produce v∗it = −αv∗−it + e∗it where * denotes the

transformed variables and var (e∗it) = 1. The conditional posterior for α is normal with

mean and variance given by M∗ and V ∗ :

M∗ =
(
V
(
âols
)−1

+ v∗′−itv
∗
−it

)−1 (
V
(
âols
)−1

âols + v∗′−itv
∗
it

)
V ∗ =

(
V
(
âols
)−1

+ v∗′−itv
∗
−it

)−1

The identification scheme in Blanchard and Perotti (2002) involves a non-triangular

A matrix and can be written as Cvt = Fet. However, as shown in Pereira and Lopes

(2014), the C and the F matrices can be transformed such that each implied equation

only contains exogenous shocks on the right hand side. Given this transformation,

Cogley and Sargent’s equation by equation algorithm becomes applicable again.

Elements of Ht : H (Ht|A,Γ, θ, Q)

Conditional on the VAR coeffi cients and the parameters of the transition equation,

the model has a multivariate non-linear state-space representation. Carlin, Polson and

Stoffer (1992) show that the conditional distribution of the state variables in a general

state space model can be written as the product of three terms:

h̃t|Zt,Ξ ∝ f
(
h̃t|h̃t−1

)
× f

(
h̃t+1|h̃t

)
× f

(
Zt|h̃t,Ξ

)
(8)

where Ξ denotes all other parameters. In the context of stochastic volatility models,

Jacquier, Polson and Rossi (1994) show that this density is a product of log normal

densities for h̄t and h̄t+1 and a normal density for Zt where h̄t = exp
(
h̃t

)
. Carlin,

Polson and Stoffer (1992) derive the general form of the mean and variance of the

underlying normal density for f
(
h̃t|h̃t−1, h̃t+1,Ξ

)
∝ f

(
h̃t|h̃t−1

)
×f

(
h̃t+1|h̃t

)
and show

that this is given by:

f
(
h̃t|h̃t−1, h̃t+1,Ξ

)
˜N (B2tb2t, B2t) (9)

where B−12t = Q̃−1+F̃ ′Q̃−1F̃ and b2t = h̃t−1F̃
′Q̃−1+ h̃t+1Q̃

−1F̃ . Here F̃ and Q̃ denote the

coeffi cients and the error variance of the transition equation, i.e. θ and Q in companion

form. Note that, due to the non-linearity of the observation equation of the model, an
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analytical expression for the complete conditional h̃t|Zt,Ξ is unavailable and aMetropolis
step is required.

Following Jacquier, Polson and Rossi (1994), we draw from (8) using a date by date

independence Metropolis step with the density in (9) being the candidate generating

density. This choice implies that the acceptance probability is given by the ratio of

the conditional likelihood f
(
Zt|h̃t,Ξ

)
at the old and the new draw. In order to take

endpoints into account, the algorithm is modified slightly for the initial condition and

the last observation. Details of these changes can be found in Jacquier, Polson and Rossi

(1994).

Parameters of the transition equation : H (θ|Γ, A,Ht, Q) and H (Q|Γ, A,Ht, θ)

Conditional on a draw for h̃t, the transition equation (7) is a VAR(1) model with a

diagonal covariance matrix. The conditional posterior for the coeffi cients θ is normal

with mean and variance given respectively by:

θ∗ = (x∗′x∗)
−1

(x∗′y∗)

v∗ = Q⊗ (x∗′x∗)
−1

where y∗ = [h̃t; yd] and x∗ = [h̃t−1;xd] with yd and xd denoting the dummy observations

that implement the prior.

The conditional posterior for Q is inverse Wishart and is given by

H (Q|Γ, A,Ht, θ) ˜IW (S∗, T ∗)

where T ∗ denote the number of actual observations plus the number of dummy obser-

vations and S∗ = (y∗ − x∗b∗)′ (y∗ − x∗b∗)
The on-line technical appendix to the paper presents a small Monte-Carlo experiment

that shows that this algorithm displays a satisfactory performance.

Convergence

The MCMC algorithm is applied using 500,000 iterations discarding the first 50,000 as

burn-in. We retain every 45th draw out of the remaining 450,000 iterations. In order to

assess convergence, we compute the Raftery and Lewis (1992) diagnostic which indicates
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Figure 7: The Raftery and Lewis (1992) diagnostic.

the total length of the run required to generate a desired level of accuracy. We report

the diagnostic for two quantiles 0.025 and 0.975. As in Primiceri (2005), the remaining

parameters are: desired accuracy 0.025, probability of attaining desired accuracy 0.95.

The results are presented in figure 7. The figure shows the estimated total length of

the run across the elements of the different parameter block. Note that the suggested

number of iterations are well below the 500,000 iterations employed in our algorithm.

As a further check we calculate ineffi ciency factors (IF) and report them in figure 8.

The IF are an estimate of 1 + 2
∑∞

k=1 ρk where ρk is the autocorrelation of the chain

and the infinite lag is approximated using a Parzen window. Values of IF around 20 are

deemed acceptable. With the exception of some stochastic volatilities, this conditions

seems to be satisfied for most parameters. For the stochastic volatilities the majority

(greater than 70%) of IF are below 30. Given the large number of endogenous and state

variables, in our view this is reasonable evidence for convergence.
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Figure 8: Ineffi ciency Factors
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Appendix B: data

BEA refers to Bureau of Economic Analysis (http://www.bea.gov/), FRED is Federal

Reserve Economic data (http://research.stlouisfed.org/fred2/) and GFD refers to Global

Financial Data. The data is available from 1970Q1 to 2015Q4. We employ the first

40 observations as a training sample, hence the effective sample runs from 1980Q1 to

2015Q4.

Fiscal data

• Government spending: Government consumption expenditures and gross invest-
ment (BEA Table 1.15 Line 22) divided by population and deflated by the GDP

deflator.

• Net Taxes: Current Receipts (BEA Table 3.1 Line 1) minus current transfer pay-
ments (BEA Table 3.1 Line 22) and interest payments (BEA Table 3.1 Line 27)

divided by population and deflated by the GDP deflator.

• Government Debt: Federal Debt Held by the Public (FRED series id FYGFDPUN)
divided by nominal GDP.

• Average cost of debt servicing: Net interest payments divided by Federal Debt held
by the public lagged one quarter. Net interest payments are obtained as interest

payments (BEA Table 3.2 Line 32 minus interest receipts (BEA Table 3.2 Line

15).

Macroeconomic/Financial data

• Real GDP per capita: Real GDP (FRED series id GDPC96) divided by population.

• Consumption of non durable goods and services: (FRED series PCND plus FRED
series PCESV) deflated by the personal consumption expenditures deflator (FRED

series id PCECTPI) and divided by population.

• Investment: Gross Private domestic investment (FRED series id GPDI) deflated

by the GDP deflator. This is then divided by population.
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• CPI (FRED series id CPIAUCSL). We calculate inflation as the annual growth in
CPI.

• 3 month Treasury Bill rate (FRED series id TB3MS). From 2009Q1 to 2015Q4,

we use the shadow rate calculated by Wu and Xia (2015). This is obtained from

the Federal Reserve Bank of Atlanta.

• Business Confidence Index: OECD business confidence indicator (GFD code:

BCUSAM).

• Consumer Confidence index: University of Michigan Consumer sentiment (FRED
id UMCSENT and UMCSENT1).

• Population ( FRED series id POP)

• GDP deflator (FRED series id GDPDEF)
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